期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Unsteady numerical simulation on helium cooldown process for the 650 MHz two-cell superconducting cavity
1
作者 Mei Li Zhengze Chang +1 位作者 Shaopeng Li Rui Ge 《Radiation Detection Technology and Methods》 CSCD 2019年第4期18-28,共11页
Background Superconducting cavity is usually needed to be gradually cooled from room temperature to the superconducting temperature zone(4.2 K and below)in the testing and sophisticated operation process of supercondu... Background Superconducting cavity is usually needed to be gradually cooled from room temperature to the superconducting temperature zone(4.2 K and below)in the testing and sophisticated operation process of superconducting cavity.Purpose The purpose of this paper is to study the cooling law on the helium cooldown process for the 650 MHz two-cell superconducting cavity with the unsteady numerical simulation.Method A three-dimensional coupled heat-flow model of 650 MHz two-cell superconducting cavity was established.The unsteady numerical simulation of different inlet temperatures,flow rates and pressure conditions was carried out.The equiva-lent convective heat transfer coefficient and temperature distribution of 650 MHz two-cell superconducting cavity during cooldown process were obtained.The effects of cooling time and entrance parameters on the cooldown process were analyzed.Results The temperature distribution of the lower intersection lines has a large drop in the initial stage of cooldown process(120 s),while the temperature near the flanges at the both ends is still higher(remaining at the initial temperature of 300 K).With the passage of time,the temperature of the upper and lower intersection lines decreases.The maximum temperature difference on the lower intersections is within 2 K in the final stage of cooldown process(3600 s).The maximum temperature difference increases by 180%,and the difference between the maximum temperature and the minimum temperature(dT)at the end of a cooldown stage increases by 130%after 1 h,respectively,when the inlet temperature drops from 290 to 270 K(under the condition of the initial temperature of 300 K).Conclusions The maximum temperature difference and the dT at the end of a cooldown stage increase with the decrease in the inlet temperature.The maximum temperature difference increases with the increase in the inlet flow rate,while the dT at the end of a cooldown stage decreases with the increase in the inlet flow rate.The effect of changing the inlet flow rate on the cooling rate is not as obvious as changing the inlet temperature.Once there is a certain flow rate,the advantage of further increasing the flow rate to reduce the temperature of the superconducting cavity is not so great. 展开更多
关键词 ACCELERATOR Superconducting cavity Helium gas Cooldown process unsteady numerical simulation
原文传递
A numerical simulation of unsteady flow in small diameter helical grafts
2
作者 Tinghui Zheng2,Yubo Fan1,Weizhong Wang2,Wentao Jiang2,Xiaoyan Deng1(1.School of Biological Science and Medical Engineering,Beihang University,Beijing,China 2.Department of Applied Mechanics,Sichuan University,Chengdu,Chin 《医用生物力学》 EI CAS CSCD 2009年第S1期40-41,共2页
The application of small diameter arterial grafts is limited due to the fact of relatively poor long-time patency which is caused by thrombosis formation in the short term and intimal hyperplasia(IH) in the medium and... The application of small diameter arterial grafts is limited due to the fact of relatively poor long-time patency which is caused by thrombosis formation in the short term and intimal hyperplasia(IH) in the medium and long term.Thrombosis,obstructing the flow of blood 展开更多
关键词 A numerical simulation of unsteady flow in small diameter helical grafts FLOW
下载PDF
NUMERICAL SIMULATION OF UNSTEADY FLOW AROUND A CIRCULAR CYLINDER AT HIGH REYNOLDS NUMBERS
3
作者 Yin Xieyuan Tong Bingang University of Science and Technology of ChinaHefei, Anhui, 230026, ChinaTao Feng Institute of Mechanics, Acadmia Sinica,Beijing, 100080, China 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 1991年第2期198-206,共9页
A Lagrangian-Eulerian hybrid scheme to solve unsteady N-S equation in two-dimensional incompressible fluid at high Reynolds numbers is presented in this paper. A random walk is imposed to simulate the viscous diffusio... A Lagrangian-Eulerian hybrid scheme to solve unsteady N-S equation in two-dimensional incompressible fluid at high Reynolds numbers is presented in this paper. A random walk is imposed to simulate the viscous diffusion, the vortex-in-cell method is used to obtain the convection velocity, and nascent vortices are created on a cylinder to satisfy the zero-slip condition. The impulsively started flow around a circular cylinder and the separation induced by a pair of incident vortices symmetrically approaching a circular cylinder have been successfully simulated by the hybrid scheme. The impulsively started flow from rest has been computed at Reynolds numbers 3000 and 9500. Comparisons are made with those results of finite-difference method, vortex method and flow visualization. Agreement is good. The particular attention has been paid to the evolutions of flow pattern. A topological analysis has been proposed in the region of the near wake. The bulge, isolated secondary vortex, a pair of secondary vortices, ' forewake phenomenon and other patterns are simulated numerically. The separation induced by a pair of incident vortices approaching a circular cylinder has been investigated by using the same scheme. The rebounding phenomenon of the incident vortex is observed and is attributed to the effect of the secondary vortex. In particular, we have found that a tertiary vortex can be formed near the surface; this phenomenon has been verified by flow visualization reported recently. 展开更多
关键词 numerical simulation OF unsteady FLOW AROUND A CIRCULAR CYLINDER AT HIGH REYNOLDS NUMBERS AT
下载PDF
Numerical Simulation for Effect of Inlet Cooling Rate on Fluid Flow and Temperature Distribution in Tundish 被引量:7
4
作者 QU Tian-peng LIU Cheng-jun JIANG Mao-fa 《Journal of Iron and Steel Research(International)》 SCIE CAS CSCD 2012年第7期12-19,共8页
The fluid flow in tundish is a non-isothermal process and the temperature variation of stream from teeming ladle dominates the fluid flow and thermal distribution in tundish. A numerical model was established to inves... The fluid flow in tundish is a non-isothermal process and the temperature variation of stream from teeming ladle dominates the fluid flow and thermal distribution in tundish. A numerical model was established to investigate the effect of inlet cooling rate on fluid flow and temperature distribution in tundish based on a FTSC (Flexible Thin Slab Casting) tundish. The inlet cooling rate varies from 0. 5 to 0. 25 ~C/rain. Under the present calculation conditions, the following conclusions were made. When the stream temperature from teeming ladle drops seriously (for inlet cooling rate of 0.5℃/min), there is a "backward flow" at the coming end of casting. The horizontal flow along the free surface turns to flow along the bottom of tundish. The bottom flow shortens the fluid flow route in tundish and deteriorates the removal effect of nonmetallic inclusions from molten steel. Nevertheless, when the inlet cooling rate decreases to 0.25℃/min, the horizontal flow is sustained during the whole casting period. The present research provides theoretical directions for temperature control in teeming ladle and continuous casting tundish during production of advanced steels. 展开更多
关键词 TUNDISH thermal distribution unsteady numerical simulation
原文传递
Unsteady flow characteristic analysis of turbine based combined cycle(TBCC)inlet mode transition10.1016/j.jppr.2015.07.006 被引量:4
5
作者 Jun Liu Huacheng Yuan Rongwei Guo 《Propulsion and Power Research》 SCIE 2015年第3期141-149,共9页
A turbine based combined cycle(TBCC)propulsion system uses a turbine-based engine to accelerate the vehicle from takeoff to the mode transition flight condition,at which point,the propulsion system performs a“mode tr... A turbine based combined cycle(TBCC)propulsion system uses a turbine-based engine to accelerate the vehicle from takeoff to the mode transition flight condition,at which point,the propulsion system performs a“mode transition”from the turbine to ramjet engine.Smooth inlet mode transition is accomplished when flow is diverted from one flowpath to the other,without experiencing unstart or buzz.The smooth inlet mode transition is a complex unsteady process and it is one of the enabling technologies for combined cycle engine to become a functional reality.In order to unveil the unsteady process of inlet mode transition,the research of over/under TBCC inlet mode transition was conducted through a numerical simulation.It shows that during the mode transition the terminal shock oscillates in the inlet.During the process of inlet mode transition mass flow rate and Mach number of turbojet flowpath reduce with oscillation.While in ramjet flowpath the flow field is non-uniform at the beginning of inlet mode transition.The speed of mode transition and the operation states of the turbojet and ramjet engines will affect the motion of terminal shock.The result obtained in present paper can help us realize the unsteady flow characteristic during the mode transition and provide some suggestions for TBCC inlet mode transition based on the smooth transition of thrust. 展开更多
关键词 Airbreathing hypersonic vehicle Turbine based combined cycle(TBCC) Inlet mode transition unsteady numerical simulation Shock oscillation
原文传递
Unsteady Flow Variability Driven by Rotor-stator Interaction at Rotor Exit 被引量:5
6
作者 ZHAO Ben YANG Ce +2 位作者 CHEN Shan QI Mingxu ZHOU Mi 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2012年第6期871-878,共8页
关键词 transonic compressor numerical simulation rotor-stator interaction unsteady flow wake oscillation
原文传递
Flow response hysteresis of throat regulation process of a two-dimensional mixed-compression supersonic inlet 被引量:1
7
作者 Yi JIN Shu SUN +2 位作者 Huijun TAN Yue ZHANG Hexia HUANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第3期112-127,共16页
The variable geometry supersonic inlet tends to decrease the throat area to reduce the Mach number upstream of the terminal shock,so as to reduce the flow loss.However,excessive Internal Contraction Ratio(ICR)exposes ... The variable geometry supersonic inlet tends to decrease the throat area to reduce the Mach number upstream of the terminal shock,so as to reduce the flow loss.However,excessive Internal Contraction Ratio(ICR)exposes the inlet to a greater risk of unstart,which inevitably results in a process of increasing the throat area to aid the inlet restart.In the above throat regulation process,the inlet undergoes the start,unstart,and restart states in turn.In order to reveal the flow structure and mechanism of this process,a two-dimensional unsteady numerical simulation combined with a dynamic mesh technique were employed.The shock-on-lip Mach number of the studied inlet is 4.0 and the flight angle of attack is+6°.Analysis was focused on the state with a freestream Mach number of 3.0.The results clearly show that the flow response hysteresis appears,and restart is only realized when the throat area is obviously increased as compared to that of unstart due to the historical unstart flow structure.In addition,three typical flow fields were analyzed,and it is found that the separation ahead of the inlet was the key factor affecting the hysteresis.Finally,unstart and restart boundaries of the inlet were discussed,and the factors influencing its deviation from the typical boundaries of dual-solution area were analyzed.The newly predicted unstart and restart boundaries are much closer to the CFD results. 展开更多
关键词 HYSTERESIS RESTART Supersonic inlet Throat regulation process UNSTART unsteady numerical simulation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部