Achieving the detachment of divertor can help to alleviate excessive heat load and sputtering problems on the target plates,thereby extending the lifetime of divertor components for fusion devices.In order to provide ...Achieving the detachment of divertor can help to alleviate excessive heat load and sputtering problems on the target plates,thereby extending the lifetime of divertor components for fusion devices.In order to provide a fast but relatively reliable prediction of plasma parameters along the flux tube for future device design,a one-dimensional(1D)modeling code for the operating point of impurity seeded detached divertor is developed based on Python language,which is a fluid model based on previous work(Plasma Phys.Control.Fusion 58045013(2016)).The experimental observation of the onset of divertor detachment by neon(Ne)and argon(Ar)seeding in EAST is well reproduced by using the 1D modeling code.The comparison between the 1D modeling and two-dimensional(2D)simulation by the SOLPS-ITER code for CFETR detachment operation with Ne and Ar seeding also shows that they are in good agreement.We also predict the radiative power loss and corresponding impurity concentration requirement for achieving divertor detachment via different impurity seeding under high heating power conditions in EAST and CFETR phase II by using the 1D model.Based on the predictions,the optimized parameter space for divertor detachment operation on EAST and CFETR is also determined.Such a simple but reliable 1D model can provide a reasonable parameter input for a detailed and accurate analysis by 2D or three-dimensional(3D)modeling tools through rapid parameter scanning.展开更多
Modeling of unsteady aerodynamic loads at high angles of attack using a small amount of experimental or simulation data to construct predictive models for unknown states can greatly improve the efficiency of aircraft ...Modeling of unsteady aerodynamic loads at high angles of attack using a small amount of experimental or simulation data to construct predictive models for unknown states can greatly improve the efficiency of aircraft unsteady aerodynamic design and flight dynamics analysis.In this paper,aiming at the problems of poor generalization of traditional aerodynamic models and intelligent models,an intelligent aerodynamic modeling method based on gated neural units is proposed.The time memory characteristics of the gated neural unit is fully utilized,thus the nonlinear flow field characterization ability of the learning and training process is enhanced,and the generalization ability of the whole prediction model is improved.The prediction and verification of the model are carried out under the maneuvering flight condition of NACA0015 airfoil.The results show that the model has good adaptability.In the interpolation prediction,the maximum prediction error of the lift and drag coefficients and the moment coefficient does not exceed 10%,which can basically represent the variation characteristics of the entire flow field.In the construction of extrapolation models,the training model based on the strong nonlinear data has good accuracy for weak nonlinear prediction.Furthermore,the error is larger,even exceeding 20%,which indicates that the extrapolation and generalization capabilities need to be further optimized by integrating physical models.Compared with the conventional state space equation model,the proposed method can improve the extrapolation accuracy and efficiency by 78%and 60%,respectively,which demonstrates the applied potential of this method in aerodynamic modeling.展开更多
In this paper, on the basis of the heat conduction equation without consideration of the advection and turbulence effects, one-dimensional model for describing surface sea temperature ( T1), bottom sea temperature ( T...In this paper, on the basis of the heat conduction equation without consideration of the advection and turbulence effects, one-dimensional model for describing surface sea temperature ( T1), bottom sea temperature ( Tt ) and the thickness of the upper homogeneous layer ( h ) is developed in terms of the dimensionless temperature θT and depth η and self-simulation function θT - f(η) of vertical temperature profile by means of historical temperature data.The results of trial prediction with our one-dimensional model on T, Th, h , the thickness and gradient of thermocline are satisfactory to some extent.展开更多
In order to use the second-order 5-point difference scheme mentioned to compute the solution of one dimension unsteady equations of the direct reflection of the strong plane detonation wave meeting a solid wall barrie...In order to use the second-order 5-point difference scheme mentioned to compute the solution of one dimension unsteady equations of the direct reflection of the strong plane detonation wave meeting a solid wall barrier,in this paper,we technically construct the difference schemes of the boundary and sub-boundary of the problem,and deduce the auto-analogue analytic solutions of the initial value problem,and at the same time,we present a method for the singular property of the initial value problem,from which we can get a satisfactory computation result of this difficult problem.The difference scheme used in this paper to deal with the discontinuity problems of the shock wave are valuable and worth generalization.展开更多
The observation data for 5 d at a station in the South China Sea is presented. After brief anMysis of the wind speed, air temperature from the ship-borne meteorological instruments and temperature and salinity profile...The observation data for 5 d at a station in the South China Sea is presented. After brief anMysis of the wind speed, air temperature from the ship-borne meteorological instruments and temperature and salinity profiles from the CTD (conductivity, temperature, depth recorder) data, the authors find that the CTD casts are too sparse for us to understand the diurnal evolution of the thermal structure in the upper ocean. A one-dimensional (1D) numericM code based on Mellor-Yamada turbulence closure model is used to reconstruct the upper ocean thermal structure, utilizing the atmospheric forcing data from ship-borne weather station. The simulation results show good agreement with the observational data; the significance of breaking waves is also briefly discussed. The evolution of turbulence kinetic energy (TKE) and the contribution from shear production and buoy- ancy production are discussed respectively. Finally, several possible factors which might influence the numerical results are briefly analyzed.展开更多
By means of Muskhelishvili’s method and the technique of generalized conformal mapping,the physical plane problems are transformed into regular mathematical problems in quasicrystals(QCs).The analytical solution to a...By means of Muskhelishvili’s method and the technique of generalized conformal mapping,the physical plane problems are transformed into regular mathematical problems in quasicrystals(QCs).The analytical solution to an elliptical orifice problem with asymmetric cracks in one-dimensional(1D)orthorhombic QCs is obtained.By using the Dugdale-Barenblatt model,the plastic simulation at the crack tip of the elliptical orifice with asymmetric cracks in 1D orthorhombic QCs is performed.Finally,the size of the atomic cohesive force zone is determined precisely,and the size of the atomic cohesive force zone around the crack tip of an elliptical orifice with a single crack or two symmetric cracks is obtained.展开更多
As a typical physical retrieval algorithm for retrieving atmospheric parameters,one-dimensional variational(1 DVAR)algorithm is widely used in various climate and meteorological communities and enjoys an important pos...As a typical physical retrieval algorithm for retrieving atmospheric parameters,one-dimensional variational(1 DVAR)algorithm is widely used in various climate and meteorological communities and enjoys an important position in the field of microwave remote sensing.Among algorithm parameters affecting the performance of the 1 DVAR algorithm,the accuracy of the microwave radiative transfer model for calculating the simulated brightness temperature is the fundamental constraint on the retrieval accuracies of the 1 DVAR algorithm for retrieving atmospheric parameters.In this study,a deep neural network(DNN)is used to describe the nonlinear relationship between atmospheric parameters and satellite-based microwave radiometer observations,and a DNN-based radiative transfer model is developed and applied to the 1 DVAR algorithm to carry out retrieval experiments of the atmospheric temperature and humidity profiles.The retrieval results of the temperature and humidity profiles from the Microwave Humidity and Temperature Sounder(MWHTS)onboard the Feng-Yun-3(FY-3)satellite show that the DNN-based radiative transfer model can obtain higher accuracy for simulating MWHTS observations than that of the operational radiative transfer model RTTOV,and also enables the 1 DVAR algorithm to obtain higher retrieval accuracies of the temperature and humidity profiles.In this study,the DNN-based radiative transfer model applied to the 1 DVAR algorithm can fundamentally improve the retrieval accuracies of atmospheric parameters,which may provide important reference for various applied studies in atmospheric sciences.展开更多
A one -dimensional time-dependent photochemical model is used to simulate the influence of ion-produced NOx and HOx radicals on the Antarctic ozone depletion in polar night and polar spring at a latitude of 73 degrees...A one -dimensional time-dependent photochemical model is used to simulate the influence of ion-produced NOx and HOx radicals on the Antarctic ozone depletion in polar night and polar spring at a latitude of 73 degrees south.Vertical transport and nitrogen-oxygen (NOx). hydrogen-oxygen (HOx) production by ionic reactions have been introduced into the model.NOx and HOx produced by precipitating ions are transported into the lower stratosphere by vertical motion and have some effects in the development of the Antarctic ozone depletion.From winter through spring the calculated ozone column decreases to 269.4 DU. However, this value is significantly higher than the total ozone observed at several Antarctic ozone stations.展开更多
We use the Bethe’s ansatz method to study the entanglement of spinons in the quantum phase transition of half integer spin one-dimensional magnetic chains known as quantum wires. We calculate the entanglement in the ...We use the Bethe’s ansatz method to study the entanglement of spinons in the quantum phase transition of half integer spin one-dimensional magnetic chains known as quantum wires. We calculate the entanglement in the limit of the number of particles . We obtain an abrupt change in the entanglement next the quantum phase transition point of the anisotropy parameter ?from the gapped phase ?to gapless phase .展开更多
In this paper, the coupling schemes of atmosphere-ocean climate models are discussed with one-dimensional advection equations. The convergence and stability for synchronous and asynchronous schemes are demonstrated an...In this paper, the coupling schemes of atmosphere-ocean climate models are discussed with one-dimensional advection equations. The convergence and stability for synchronous and asynchronous schemes are demonstrated and compared.Conclusions inferred from the analysis are given below. The synchronous scheme as well as the asynchronous-implicit scheme in this model are stable for arbitrary integrating time intervals. The asynchronous explicit scheme is unstable under certain conditions, which depend upon advection velocities and heat exchange parameters in the atmosphere and oceans. With both synchronous and asynchronous stable schemes the discrete solutions converge to their unique exact ones. Advections in the atmosphere and ocean accelerate the rate of convergence of the asynchronous-implicit scheme. It is suggusted that the asynchronous-implicit coupling scheme is a stable and efficient method for most climatic simulations.展开更多
In the paper, the determinate atlecation decision model and the probabilistic allocation decision model of a kind of renewable resource are separatly studied by means of dynamic programming, and the optimal allocation...In the paper, the determinate atlecation decision model and the probabilistic allocation decision model of a kind of renewable resource are separatly studied by means of dynamic programming, and the optimal allocation policy is given under some special conditions.展开更多
The fractional calculus is used in the constitutive relationship model of viscoelastic fluid. A generalized Maxwell model with fractional calculus is considered. Based on the flow conditions described, two flow cases ...The fractional calculus is used in the constitutive relationship model of viscoelastic fluid. A generalized Maxwell model with fractional calculus is considered. Based on the flow conditions described, two flow cases are solved and the exact solutions are obtained by using the Weber transform and the Laplace transform for fractional calculus.展开更多
In view of engineering application, it is practicable to decompose the aerodynamics into three components: the static aerodynamics, the aerodynamic increment due to steady rotations, and the aerodynamic increment due...In view of engineering application, it is practicable to decompose the aerodynamics into three components: the static aerodynamics, the aerodynamic increment due to steady rotations, and the aerodynamic increment due to unsteady separated and vortical flow. The first and the second components can be presented in conventional forms, while the third is described using a one-order differential equation and a radial-basis-function (RBF) network. For an aircraft configuration, the mathematical models of 6- component aerodynamic coefficients are set up from the wind tunnel test data of pitch, yaw, roll, and coupled yawroll large-amplitude oscillations. The flight dynamics of an aircraft is studied by the bifurcation analysis technique in the case of quasi-steady aerodynamics and unsteady aerodynam- ics, respectively. The results show that: (1) unsteady aerodynamics has no effect upon the existence of trim points, but affects their stability; (2) unsteady aerodynamics has great effects upon the existence, stability, and amplitudes of periodic solutions; and (3) unsteady aerodynamics changes the stable regions of trim points obviously. Furthermore, the dynamic responses of the aircraft to elevator deflections are inspected. It is shown that the unsteady aerodynamics is beneficial to dynamic stability for the present aircraft. Finally, the effects of unsteady aerodynamics on the post-stall maneuverability展开更多
In this paper, by using the level spectroscopy method and bosonization theory, we discuss the evolution of the bond-order-wave (BOW) phase in a one-dimensional half-filled extended Hubbard model wlth the on-site Cou...In this paper, by using the level spectroscopy method and bosonization theory, we discuss the evolution of the bond-order-wave (BOW) phase in a one-dimensional half-filled extended Hubbard model wlth the on-site Coulomb repulsion U as well as the inter-site Coulomb repulsion V and antiferromagnetic exchange J. After clarifying the generic phase diagrams in three limiting cases with one of the parameters being fixed at zero individually, we find that the BOW phase in the U-V phase diagram is initially enlarged as J increases from zero but is eventually suppressed as J increases further in the strong-coupling regime. A three-dimensional phase diagram is suggested where the BOW phase exists in an extended region separated from the spin-density-wave and charge-density-wave phases.展开更多
A new unsteady three-dimensional convective-diffusive mathematical model for the transportation of macromolecules and water across the arterial wall was proposed . After the formation of leaky junctions due to the mit...A new unsteady three-dimensional convective-diffusive mathematical model for the transportation of macromolecules and water across the arterial wall was proposed . After the formation of leaky junctions due to the mitosis of endothelial cell of the arterial wall, the macromolecular transport happens surrounding the leaky cells. The arterial wall was divided into four layers: the endothelial layer, the subendothelial intima, the internal elastic lamina and the media for the convenience of research. The time-dependent concentration growth,the effect of the shape of endothelial cell and the effect of physiological parameters were analyzed. The analytical solution of velocity field and pressure field of water flow across the arterial wall were obtained; and concentration distribution of three macromolecules ; LDL,HRP and Albumin, were calculated with numerical simulation method. The new theory predicts, the maximum and distribution areas of time dependent concentration with round shape endothelial cell are both larger than that with ellipse-shape endothelial cell. The model also predicts the concentration growth is much alike that of a two-dimensional model and it shows that the concentration reaches its peak at the leaky junction where atherosclerotic formation frequently occurs and falls down rapidly in a limited area beginning from its earlier time growth to the state when macromolecular transfer approaches steadily. These predictions of the new model are in agreement with the experimental observation for the growth and concentration distribution of LDL and Albumin.展开更多
A knowledge of soil permeability is essential to evaluate hydrologic characteristics of soil, such as water storage and water movement, and soil permeability coefficient is an important parameter that reflects soil pe...A knowledge of soil permeability is essential to evaluate hydrologic characteristics of soil, such as water storage and water movement, and soil permeability coefficient is an important parameter that reflects soil permeability. In order to confirm the acceptability of the one-dimensional horizontal infiltration method(one-D method) for simultaneously determining both the saturated and unsaturated permeability coefficients of loamy sand, we first measured the cumulative infiltration and the wetting front distance under various infiltration heads through a series of one-dimensional horizontal infiltration experiments, and then analyzed the relationships of the cumulative horizontal infiltration with the wetting front distance and the square root of infiltration time. We finally compared the permeability results from Gardner model based on the one-D method with the results from other two commonly-used methods(i.e., constant head method and van Genuchten model) to evaluate the acceptability and applicability of the one-D method. The results showed that there was a robust linear relationship between the cumulative horizontal infiltration and the wetting front distance, suggesting that it is more appropriate to take the soil moisture content after infiltration in the entire wetted zone as the average soil moisture content than as the saturated soil moisture content. The results also showed that there was a robust linear relationship between the cumulative horizontal infiltration and the square root of infiltration time, suggesting that the Philip infiltration formula can better reflect the characteristics of cumulative horizontal infiltration under different infiltration heads. The following two facts indicate that it is feasible to use the one-D method for simultaneously determining the saturated and unsaturated permeability coefficients of loamy sand. First, the saturated permeability coefficient(prescribed in the Gardner model) of loamy sand obtained from the one-D method well agreed with the value obtained from the constant head method. Second, the relationship of unsaturated permeability coefficient with soil water suction for loamy sand calculated using Gardner model based on the one-D method was nearly identical with the same relationship calculated using van Genuchten model.展开更多
A water balance has a significant impact on the overall system performance in proton exchange membrane fuel cell.An actual fuel cell application has a dynamic electrical load which means also dynamic electrical curren...A water balance has a significant impact on the overall system performance in proton exchange membrane fuel cell.An actual fuel cell application has a dynamic electrical load which means also dynamic electrical current.Therefore,since this electrical current is known,the water production from the fuel cell reaction is also able to be predicted.As long as the fuel cell water transportation model is provided,the present liquid water inside the porous medium is also able to be modeled.A model of the liquid water saturation level in a fuel cell in unsteady load condition was proposed.This model is a series of the water transportation model of water saturation level for the final output of proton exchange membrane(PEM) fuel cell to predict the flooding or drying of PEM fuel cell.The simulation of vehicle fuel cell in different dynamic load profiles and different inlet air conditions was done using this model.The simulation result shows that PEM fuel cell with different dynamic load profiles has different liquid water saturation level profiles.This means that a dynamic load fuel cell requires also a dynamic input air humidification.展开更多
A new unsteady three-dimensional convective-diffusive mathematical model for the transportation of macromolecules and water across the arterial wall was proposed . After the formation of leaky junctions due to the mit...A new unsteady three-dimensional convective-diffusive mathematical model for the transportation of macromolecules and water across the arterial wall was proposed . After the formation of leaky junctions due to the mitosis of endothelial cell of the arterial wall, the macromolecular transport happens surrounding the leaky cells. The arterial wall was divided into four layers: the endothelial layer, the subendothelial intima, the internal elastic lamina and the media for the convenience of research. The time-dependent concentration growth, the effect of the shape of endothelial cell and the effect of physiological parameters were analyzed. The analytical solution of velocity field and pressure field of water flow across the arterial wall were obtained; and concentration distribution of three macromolecules; LDL, HRP and Albumin, were calculated with numerical simulation method. The new theory predicts, the maximum and distribution areas of time dependent concentration with round-shape endothelial cell are both larger than that with ellipse-shape endothelial cell. The model also predicts the concentration growth is much alike that of a two-dimensional model and it shows that the concentration reaches its peak at the leaky junction where atherosclerotic formation frequently occurs and falls down rapidly in a limited area beginning from its earlier-time growth to the state when macromolecular transfer approaches steadily. These predictions of the new model are in agreement with the experimental observation for the growth and concentration distribution of LDL and Albumin.展开更多
The temperature field in unsteady phase greatly affects the quality of friction plug welding(FPW).An analytical model is put forward to correlate the process parameters and the temperature field in unsteady phase of F...The temperature field in unsteady phase greatly affects the quality of friction plug welding(FPW).An analytical model is put forward to correlate the process parameters and the temperature field in unsteady phase of FPW.Applying the von Mises criterion for plastic deformation and linearizing the heat flux,the model is achieved by Laplace transformation.The predicated peak temperature and peak time agree with the experiment data,with errors of about 4%and 8%,of AA7075-T6 FPW.展开更多
The unsteady flow of viscoelastic fluid in a cylindrical pipe was investigated using the fractional Maxwell model. Two special cases of unsteady pipe flow were expressed. The first is start-up flow, and the second is ...The unsteady flow of viscoelastic fluid in a cylindrical pipe was investigated using the fractional Maxwell model. Two special cases of unsteady pipe flow were expressed. The first is start-up flow, and the second is oscillating flow. The exact solution of start-up flow under a constant pressure gradient was obtained by using the theories of Laplace transform and Fourier-Bessel series for fractional derivatives. The exact solution of oscillating flow was obtained by utilizing the separation of variables.展开更多
基金Project supported by the National Key Research and Development Program of China (Grant No.2022YFE03030001)the National Natural Science Foundation of China (Grant No.12075283)。
文摘Achieving the detachment of divertor can help to alleviate excessive heat load and sputtering problems on the target plates,thereby extending the lifetime of divertor components for fusion devices.In order to provide a fast but relatively reliable prediction of plasma parameters along the flux tube for future device design,a one-dimensional(1D)modeling code for the operating point of impurity seeded detached divertor is developed based on Python language,which is a fluid model based on previous work(Plasma Phys.Control.Fusion 58045013(2016)).The experimental observation of the onset of divertor detachment by neon(Ne)and argon(Ar)seeding in EAST is well reproduced by using the 1D modeling code.The comparison between the 1D modeling and two-dimensional(2D)simulation by the SOLPS-ITER code for CFETR detachment operation with Ne and Ar seeding also shows that they are in good agreement.We also predict the radiative power loss and corresponding impurity concentration requirement for achieving divertor detachment via different impurity seeding under high heating power conditions in EAST and CFETR phase II by using the 1D model.Based on the predictions,the optimized parameter space for divertor detachment operation on EAST and CFETR is also determined.Such a simple but reliable 1D model can provide a reasonable parameter input for a detailed and accurate analysis by 2D or three-dimensional(3D)modeling tools through rapid parameter scanning.
基金supported in part by the National Natural Science Foundation of China (No. 12202363)。
文摘Modeling of unsteady aerodynamic loads at high angles of attack using a small amount of experimental or simulation data to construct predictive models for unknown states can greatly improve the efficiency of aircraft unsteady aerodynamic design and flight dynamics analysis.In this paper,aiming at the problems of poor generalization of traditional aerodynamic models and intelligent models,an intelligent aerodynamic modeling method based on gated neural units is proposed.The time memory characteristics of the gated neural unit is fully utilized,thus the nonlinear flow field characterization ability of the learning and training process is enhanced,and the generalization ability of the whole prediction model is improved.The prediction and verification of the model are carried out under the maneuvering flight condition of NACA0015 airfoil.The results show that the model has good adaptability.In the interpolation prediction,the maximum prediction error of the lift and drag coefficients and the moment coefficient does not exceed 10%,which can basically represent the variation characteristics of the entire flow field.In the construction of extrapolation models,the training model based on the strong nonlinear data has good accuracy for weak nonlinear prediction.Furthermore,the error is larger,even exceeding 20%,which indicates that the extrapolation and generalization capabilities need to be further optimized by integrating physical models.Compared with the conventional state space equation model,the proposed method can improve the extrapolation accuracy and efficiency by 78%and 60%,respectively,which demonstrates the applied potential of this method in aerodynamic modeling.
文摘In this paper, on the basis of the heat conduction equation without consideration of the advection and turbulence effects, one-dimensional model for describing surface sea temperature ( T1), bottom sea temperature ( Tt ) and the thickness of the upper homogeneous layer ( h ) is developed in terms of the dimensionless temperature θT and depth η and self-simulation function θT - f(η) of vertical temperature profile by means of historical temperature data.The results of trial prediction with our one-dimensional model on T, Th, h , the thickness and gradient of thermocline are satisfactory to some extent.
文摘In order to use the second-order 5-point difference scheme mentioned to compute the solution of one dimension unsteady equations of the direct reflection of the strong plane detonation wave meeting a solid wall barrier,in this paper,we technically construct the difference schemes of the boundary and sub-boundary of the problem,and deduce the auto-analogue analytic solutions of the initial value problem,and at the same time,we present a method for the singular property of the initial value problem,from which we can get a satisfactory computation result of this difficult problem.The difference scheme used in this paper to deal with the discontinuity problems of the shock wave are valuable and worth generalization.
基金The National Basic Research Program of China under contract Nos 2011CB403501 and 2009CB421201the National Natural Science Foundation of China under contract Nos 41176016 and 41076007
文摘The observation data for 5 d at a station in the South China Sea is presented. After brief anMysis of the wind speed, air temperature from the ship-borne meteorological instruments and temperature and salinity profiles from the CTD (conductivity, temperature, depth recorder) data, the authors find that the CTD casts are too sparse for us to understand the diurnal evolution of the thermal structure in the upper ocean. A one-dimensional (1D) numericM code based on Mellor-Yamada turbulence closure model is used to reconstruct the upper ocean thermal structure, utilizing the atmospheric forcing data from ship-borne weather station. The simulation results show good agreement with the observational data; the significance of breaking waves is also briefly discussed. The evolution of turbulence kinetic energy (TKE) and the contribution from shear production and buoy- ancy production are discussed respectively. Finally, several possible factors which might influence the numerical results are briefly analyzed.
基金Project supported by the National Natural Science Foundation of China(Nos.12162027 and 11962026)the Natural Science Key Project of Science and Technology Research in Higher Education Institutions of Inner Mongolia Autonomous Region(No.NJZZ22574)。
文摘By means of Muskhelishvili’s method and the technique of generalized conformal mapping,the physical plane problems are transformed into regular mathematical problems in quasicrystals(QCs).The analytical solution to an elliptical orifice problem with asymmetric cracks in one-dimensional(1D)orthorhombic QCs is obtained.By using the Dugdale-Barenblatt model,the plastic simulation at the crack tip of the elliptical orifice with asymmetric cracks in 1D orthorhombic QCs is performed.Finally,the size of the atomic cohesive force zone is determined precisely,and the size of the atomic cohesive force zone around the crack tip of an elliptical orifice with a single crack or two symmetric cracks is obtained.
基金National Natural Science Foundation of China(41901297,41806209)Science and Technology Key Project of Henan Province(202102310017)+1 种基金Key Research Projects for the Universities of Henan Province(20A170013)China Postdoctoral Science Foundation(2021M693201)。
文摘As a typical physical retrieval algorithm for retrieving atmospheric parameters,one-dimensional variational(1 DVAR)algorithm is widely used in various climate and meteorological communities and enjoys an important position in the field of microwave remote sensing.Among algorithm parameters affecting the performance of the 1 DVAR algorithm,the accuracy of the microwave radiative transfer model for calculating the simulated brightness temperature is the fundamental constraint on the retrieval accuracies of the 1 DVAR algorithm for retrieving atmospheric parameters.In this study,a deep neural network(DNN)is used to describe the nonlinear relationship between atmospheric parameters and satellite-based microwave radiometer observations,and a DNN-based radiative transfer model is developed and applied to the 1 DVAR algorithm to carry out retrieval experiments of the atmospheric temperature and humidity profiles.The retrieval results of the temperature and humidity profiles from the Microwave Humidity and Temperature Sounder(MWHTS)onboard the Feng-Yun-3(FY-3)satellite show that the DNN-based radiative transfer model can obtain higher accuracy for simulating MWHTS observations than that of the operational radiative transfer model RTTOV,and also enables the 1 DVAR algorithm to obtain higher retrieval accuracies of the temperature and humidity profiles.In this study,the DNN-based radiative transfer model applied to the 1 DVAR algorithm can fundamentally improve the retrieval accuracies of atmospheric parameters,which may provide important reference for various applied studies in atmospheric sciences.
文摘A one -dimensional time-dependent photochemical model is used to simulate the influence of ion-produced NOx and HOx radicals on the Antarctic ozone depletion in polar night and polar spring at a latitude of 73 degrees south.Vertical transport and nitrogen-oxygen (NOx). hydrogen-oxygen (HOx) production by ionic reactions have been introduced into the model.NOx and HOx produced by precipitating ions are transported into the lower stratosphere by vertical motion and have some effects in the development of the Antarctic ozone depletion.From winter through spring the calculated ozone column decreases to 269.4 DU. However, this value is significantly higher than the total ozone observed at several Antarctic ozone stations.
文摘We use the Bethe’s ansatz method to study the entanglement of spinons in the quantum phase transition of half integer spin one-dimensional magnetic chains known as quantum wires. We calculate the entanglement in the limit of the number of particles . We obtain an abrupt change in the entanglement next the quantum phase transition point of the anisotropy parameter ?from the gapped phase ?to gapless phase .
文摘In this paper, the coupling schemes of atmosphere-ocean climate models are discussed with one-dimensional advection equations. The convergence and stability for synchronous and asynchronous schemes are demonstrated and compared.Conclusions inferred from the analysis are given below. The synchronous scheme as well as the asynchronous-implicit scheme in this model are stable for arbitrary integrating time intervals. The asynchronous explicit scheme is unstable under certain conditions, which depend upon advection velocities and heat exchange parameters in the atmosphere and oceans. With both synchronous and asynchronous stable schemes the discrete solutions converge to their unique exact ones. Advections in the atmosphere and ocean accelerate the rate of convergence of the asynchronous-implicit scheme. It is suggusted that the asynchronous-implicit coupling scheme is a stable and efficient method for most climatic simulations.
文摘In the paper, the determinate atlecation decision model and the probabilistic allocation decision model of a kind of renewable resource are separatly studied by means of dynamic programming, and the optimal allocation policy is given under some special conditions.
基金The project supported by the National Natural Science Foundation of China (10272067, 10426024)the Doctoral Program Foundation of the Education Ministry of China (20030422046)the Natural Science Foundation of Shandong University at Weihai.
文摘The fractional calculus is used in the constitutive relationship model of viscoelastic fluid. A generalized Maxwell model with fractional calculus is considered. Based on the flow conditions described, two flow cases are solved and the exact solutions are obtained by using the Weber transform and the Laplace transform for fractional calculus.
文摘In view of engineering application, it is practicable to decompose the aerodynamics into three components: the static aerodynamics, the aerodynamic increment due to steady rotations, and the aerodynamic increment due to unsteady separated and vortical flow. The first and the second components can be presented in conventional forms, while the third is described using a one-order differential equation and a radial-basis-function (RBF) network. For an aircraft configuration, the mathematical models of 6- component aerodynamic coefficients are set up from the wind tunnel test data of pitch, yaw, roll, and coupled yawroll large-amplitude oscillations. The flight dynamics of an aircraft is studied by the bifurcation analysis technique in the case of quasi-steady aerodynamics and unsteady aerodynam- ics, respectively. The results show that: (1) unsteady aerodynamics has no effect upon the existence of trim points, but affects their stability; (2) unsteady aerodynamics has great effects upon the existence, stability, and amplitudes of periodic solutions; and (3) unsteady aerodynamics changes the stable regions of trim points obviously. Furthermore, the dynamic responses of the aircraft to elevator deflections are inspected. It is shown that the unsteady aerodynamics is beneficial to dynamic stability for the present aircraft. Finally, the effects of unsteady aerodynamics on the post-stall maneuverability
基金The project supported in part by National Natural Science Foundation of China and the Natural Science Foundation of Zhejiang Province of China. We acknowledge useful discussions with X. Feng, T. Xiang, and Y. Yu.
文摘In this paper, by using the level spectroscopy method and bosonization theory, we discuss the evolution of the bond-order-wave (BOW) phase in a one-dimensional half-filled extended Hubbard model wlth the on-site Coulomb repulsion U as well as the inter-site Coulomb repulsion V and antiferromagnetic exchange J. After clarifying the generic phase diagrams in three limiting cases with one of the parameters being fixed at zero individually, we find that the BOW phase in the U-V phase diagram is initially enlarged as J increases from zero but is eventually suppressed as J increases further in the strong-coupling regime. A three-dimensional phase diagram is suggested where the BOW phase exists in an extended region separated from the spin-density-wave and charge-density-wave phases.
文摘A new unsteady three-dimensional convective-diffusive mathematical model for the transportation of macromolecules and water across the arterial wall was proposed . After the formation of leaky junctions due to the mitosis of endothelial cell of the arterial wall, the macromolecular transport happens surrounding the leaky cells. The arterial wall was divided into four layers: the endothelial layer, the subendothelial intima, the internal elastic lamina and the media for the convenience of research. The time-dependent concentration growth,the effect of the shape of endothelial cell and the effect of physiological parameters were analyzed. The analytical solution of velocity field and pressure field of water flow across the arterial wall were obtained; and concentration distribution of three macromolecules ; LDL,HRP and Albumin, were calculated with numerical simulation method. The new theory predicts, the maximum and distribution areas of time dependent concentration with round shape endothelial cell are both larger than that with ellipse-shape endothelial cell. The model also predicts the concentration growth is much alike that of a two-dimensional model and it shows that the concentration reaches its peak at the leaky junction where atherosclerotic formation frequently occurs and falls down rapidly in a limited area beginning from its earlier time growth to the state when macromolecular transfer approaches steadily. These predictions of the new model are in agreement with the experimental observation for the growth and concentration distribution of LDL and Albumin.
基金funded by the National Basic Research Program of China (2013CB429902)the National Natural Science Foundation of China (U1303181, 41671032)
文摘A knowledge of soil permeability is essential to evaluate hydrologic characteristics of soil, such as water storage and water movement, and soil permeability coefficient is an important parameter that reflects soil permeability. In order to confirm the acceptability of the one-dimensional horizontal infiltration method(one-D method) for simultaneously determining both the saturated and unsaturated permeability coefficients of loamy sand, we first measured the cumulative infiltration and the wetting front distance under various infiltration heads through a series of one-dimensional horizontal infiltration experiments, and then analyzed the relationships of the cumulative horizontal infiltration with the wetting front distance and the square root of infiltration time. We finally compared the permeability results from Gardner model based on the one-D method with the results from other two commonly-used methods(i.e., constant head method and van Genuchten model) to evaluate the acceptability and applicability of the one-D method. The results showed that there was a robust linear relationship between the cumulative horizontal infiltration and the wetting front distance, suggesting that it is more appropriate to take the soil moisture content after infiltration in the entire wetted zone as the average soil moisture content than as the saturated soil moisture content. The results also showed that there was a robust linear relationship between the cumulative horizontal infiltration and the square root of infiltration time, suggesting that the Philip infiltration formula can better reflect the characteristics of cumulative horizontal infiltration under different infiltration heads. The following two facts indicate that it is feasible to use the one-D method for simultaneously determining the saturated and unsaturated permeability coefficients of loamy sand. First, the saturated permeability coefficient(prescribed in the Gardner model) of loamy sand obtained from the one-D method well agreed with the value obtained from the constant head method. Second, the relationship of unsaturated permeability coefficient with soil water suction for loamy sand calculated using Gardner model based on the one-D method was nearly identical with the same relationship calculated using van Genuchten model.
文摘A water balance has a significant impact on the overall system performance in proton exchange membrane fuel cell.An actual fuel cell application has a dynamic electrical load which means also dynamic electrical current.Therefore,since this electrical current is known,the water production from the fuel cell reaction is also able to be predicted.As long as the fuel cell water transportation model is provided,the present liquid water inside the porous medium is also able to be modeled.A model of the liquid water saturation level in a fuel cell in unsteady load condition was proposed.This model is a series of the water transportation model of water saturation level for the final output of proton exchange membrane(PEM) fuel cell to predict the flooding or drying of PEM fuel cell.The simulation of vehicle fuel cell in different dynamic load profiles and different inlet air conditions was done using this model.The simulation result shows that PEM fuel cell with different dynamic load profiles has different liquid water saturation level profiles.This means that a dynamic load fuel cell requires also a dynamic input air humidification.
文摘A new unsteady three-dimensional convective-diffusive mathematical model for the transportation of macromolecules and water across the arterial wall was proposed . After the formation of leaky junctions due to the mitosis of endothelial cell of the arterial wall, the macromolecular transport happens surrounding the leaky cells. The arterial wall was divided into four layers: the endothelial layer, the subendothelial intima, the internal elastic lamina and the media for the convenience of research. The time-dependent concentration growth, the effect of the shape of endothelial cell and the effect of physiological parameters were analyzed. The analytical solution of velocity field and pressure field of water flow across the arterial wall were obtained; and concentration distribution of three macromolecules; LDL, HRP and Albumin, were calculated with numerical simulation method. The new theory predicts, the maximum and distribution areas of time dependent concentration with round-shape endothelial cell are both larger than that with ellipse-shape endothelial cell. The model also predicts the concentration growth is much alike that of a two-dimensional model and it shows that the concentration reaches its peak at the leaky junction where atherosclerotic formation frequently occurs and falls down rapidly in a limited area beginning from its earlier-time growth to the state when macromolecular transfer approaches steadily. These predictions of the new model are in agreement with the experimental observation for the growth and concentration distribution of LDL and Albumin.
文摘The temperature field in unsteady phase greatly affects the quality of friction plug welding(FPW).An analytical model is put forward to correlate the process parameters and the temperature field in unsteady phase of FPW.Applying the von Mises criterion for plastic deformation and linearizing the heat flux,the model is achieved by Laplace transformation.The predicated peak temperature and peak time agree with the experiment data,with errors of about 4%and 8%,of AA7075-T6 FPW.
基金The National Natural Science Foundations of China (No05131/1046, 1010503020203)
文摘The unsteady flow of viscoelastic fluid in a cylindrical pipe was investigated using the fractional Maxwell model. Two special cases of unsteady pipe flow were expressed. The first is start-up flow, and the second is oscillating flow. The exact solution of start-up flow under a constant pressure gradient was obtained by using the theories of Laplace transform and Fourier-Bessel series for fractional derivatives. The exact solution of oscillating flow was obtained by utilizing the separation of variables.