期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
DISCONTINUITY-CAPTURING FINITE ELEMENT COMPUTATION OF UNSTEADY FLOW WITH ADAPTIVE UNSTRUCTURED MESH
1
作者 董根金 陆夕云 庄礼贤 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2004年第4期347-353,共7页
A discontinuity-capturing scheme of finite element method(FEM)is proposed.The unstructured-grid technique combined with a new type of adaptive mesh approach is developed for both compressible and incompressible unstea... A discontinuity-capturing scheme of finite element method(FEM)is proposed.The unstructured-grid technique combined with a new type of adaptive mesh approach is developed for both compressible and incompressible unsteady flows,which exhibits the capability of capturing the shock waves and/or thin shear layers accurately in an unsteady viscous flow at high Reynolds number. In particular,a new testing variable,i.e.,the disturbed kinetic energy E,is suggested and used in the adaptive mesh computation,which is universally applicable to the capturing of both shock waves and shear layers in the inviscid flow and viscous flow at high Reynolds number.Based on several calculated examples,this approach has been proved to be effective and efficient for the calculations of compressible and incompressible flows. 展开更多
关键词 finite element method unstructured and adaptive mesh discontinuity capture unsteady viscous flow
下载PDF
Application of Factor Difference Scheme to Solving Discrete Flow Equations Based on Unstructured Grid 被引量:1
2
作者 刘正先 王学军 +1 位作者 戴继双 张楚华 《Transactions of Tianjin University》 EI CAS 2009年第5期324-329,共6页
A second-order mixing difference scheme with a limiting factor is deduced with the reconstruction gradient method and applied to discretizing the Navier-Stokes equation in an unstructured grid.The transform of nonorth... A second-order mixing difference scheme with a limiting factor is deduced with the reconstruction gradient method and applied to discretizing the Navier-Stokes equation in an unstructured grid.The transform of nonorthogonal diffusion items generated by the scheme in discrete equations is provided.The Delaunay triangulation method is improved to generate the unstructured grid.The computing program based on the SIMPLE algorithm in an unstructured grid is compiled and used to solve the discrete equations of two types of incompressible viscous flow.The numerical simulation results of the laminar flow driven by lid in cavity and flow behind a cylinder are compared with the theoretical solution and experimental data respectively.In the former case,a good agreement is achieved in the main velocity and drag coefficient curve.In the latter case,the numerical structure and development of vortex under several Reynolds numbers match well with that of the experiment.It is indicated that the factor difference scheme is of higher accuracy,and feasible to be applied to Navier-Stokes equation. 展开更多
关键词 unstructured grid mixing difference scheme limiting factor numerical simulation unsteady viscous flow
下载PDF
Moving-Particle Semi-Implicit Method for Vortex Patterns and Roll Damping of 2D Ship Sections 被引量:14
3
作者 潘徐杰 张怀新 卢云涛 《China Ocean Engineering》 SCIE EI 2008年第3期399-407,共9页
A meshless method, Moving-Particle Semi-hnplicit Method (MPS) is presented in this paper to simulate the rolling of different 2D ship sections. Sections S. S. 0.5, S.S. 5.0 and S. S. 7.0 of series 60 with CB = 0.6 a... A meshless method, Moving-Particle Semi-hnplicit Method (MPS) is presented in this paper to simulate the rolling of different 2D ship sections. Sections S. S. 0.5, S.S. 5.0 and S. S. 7.0 of series 60 with CB = 0.6 are chosen for the simulation. It shows that the result of MPS is very close to results of experiments or mesh-numerical simulations. In the simulation of MPS, vortices are found periodically in bilges of ship sections. In section S. S. 5.0 and section S. S. 7.0, which are close to the middle ship, two little vortices are found at different bilges of the section, in section S. S. 0.5, which is close to the bow, only one big vortex is found at the bottom of the section, these vortices patterns are consistent with the theory of Ikeda. The distribution of shear stress and pressure on the rolling hull of ship section is calculated. When vortices are in bilges of the section, the sign clmnge of pressure can be found, but in section S. S. 0.5, there is no sign change of pressure because only one vortex in the bottom of the section. With shear stress distribution, it can be found the shear stress in bilges is bigger than that at other part of the ship section. As the free surface is considered, the shear stress of both sides near the free surface is close to zero and even sign changed. 展开更多
关键词 roll damping unsteady viscous flow Moving-Panicle Semi-Implicit Method (MPS)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部