期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Modeling and Defending Passive Worms over Unstructured Peer-to-Peer Networks 被引量:8
1
作者 王方伟 张运凯 马建峰 《Transactions of Tianjin University》 EI CAS 2008年第1期66-72,共7页
Passive worms can passively propagate through embedding themselves into some sharing files, which can result in significant damage to unstructured P2P networks. To study the passive worm behaviors, this paper firstly ... Passive worms can passively propagate through embedding themselves into some sharing files, which can result in significant damage to unstructured P2P networks. To study the passive worm behaviors, this paper firstly analyzes and obtains the average delay for all peers in the whole transmitting process due to the limitation of network throughput, and then proposes a mathematical model for the propagation of passive worms over the unstructured P2P networks. The model mainly takes the effect of the network throughput into account, and applies a new healthy files dissemination-based defense strategy according to the file popularity which follows the Zipf distribution. The simulation results show that the propagation of passive worms is mainly governed by the number of hops, initially infected files and uninfected files. The larger the number of hops, the more rapidly the passive worms propagate. If the number of the initially infected files is increased by the attackers, the propagation speed of passive worms increases obviously. A larger size of the uninfected file results in a better attack performance. However, the number of files generated by passive worms is not an important factor governing the propagation of passive worms. The effectiveness of healthy files dissemination strategy is verified. This model can provide a guideline in the control of unstructured P2P networks as well as passive worm defense. 展开更多
关键词 network security unstructured peer-to-peer networks passive worms propagationmodel patch dissemination strategy
下载PDF
Deep Q-Learning Based Optimal Query Routing Approach for Unstructured P2P Network 被引量:1
2
作者 Mohammad Shoab Abdullah Shawan Alotaibi 《Computers, Materials & Continua》 SCIE EI 2022年第3期5765-5781,共17页
Deep Reinforcement Learning(DRL)is a class of Machine Learning(ML)that combines Deep Learning with Reinforcement Learning and provides a framework by which a system can learn from its previous actions in an environmen... Deep Reinforcement Learning(DRL)is a class of Machine Learning(ML)that combines Deep Learning with Reinforcement Learning and provides a framework by which a system can learn from its previous actions in an environment to select its efforts in the future efficiently.DRL has been used in many application fields,including games,robots,networks,etc.for creating autonomous systems that improve themselves with experience.It is well acknowledged that DRL is well suited to solve optimization problems in distributed systems in general and network routing especially.Therefore,a novel query routing approach called Deep Reinforcement Learning based Route Selection(DRLRS)is proposed for unstructured P2P networks based on a Deep Q-Learning algorithm.The main objective of this approach is to achieve better retrieval effectiveness with reduced searching cost by less number of connected peers,exchangedmessages,and reduced time.The simulation results shows a significantly improve searching a resource with compression to k-Random Walker and Directed BFS.Here,retrieval effectiveness,search cost in terms of connected peers,and average overhead are 1.28,106,149,respectively. 展开更多
关键词 Reinforcement learning deep q-learning unstructured p2p network query routing
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部