Unsubmerged cavitating abrasive waterjet(UCAWJ)has been shown to artificially create a submerged environment that produces shear cavitation,which effectively enhances rock-breaking performance.The shear cavitation gen...Unsubmerged cavitating abrasive waterjet(UCAWJ)has been shown to artificially create a submerged environment that produces shear cavitation,which effectively enhances rock-breaking performance.The shear cavitation generation and collapse intensity depend on the pressure difference between the intermediate high-speed abrasive waterjet and the coaxial low-speed waterjet.However,the effect of the pressure of the coaxial low-speed waterjet is pending.For this purpose,the effect of low-speed waterjet pressure on rock-breaking performance at different standoff distances was experimentally investigated,and the effects of erosion time and ruby nozzle diameter on erosion performance were discussed.Finally,the micromorphology of the sandstone was observed at different locations.The results show that increased erosion time and ruby nozzle diameter can significantly improve the rock-breaking performance.At different standoff distances,the mass loss increases first and then decreases with the increase of low-speed waterjet pressure,the maximum mass loss is 10.4 g at a low-speed waterjet pressure of0.09 MPa.The surface morphology of cavitation erosion was measured using a 3D profiler,the increase in both erosion depth and surface roughness indicated a significant increase in the intensity of the shear cavitation collapse.At a low-speed waterjet pressure of 0.18 MPa,the cavitation erosion surface depth can reach 600μm with a roughness of 127μm.展开更多
To improve the rock breaking ability, cavitating waterjet and abrasive waterjet are combined by using a coaxial low-speed waterjet generated around the periphery of a high-speed abrasive waterjet, and a new type of wa...To improve the rock breaking ability, cavitating waterjet and abrasive waterjet are combined by using a coaxial low-speed waterjet generated around the periphery of a high-speed abrasive waterjet, and a new type of waterjet called unsubmerged cavitating abrasive waterjet(UCAWJ) is thus produced. The rock breaking performance of UCAWJ was compared with submerged cavitating abrasive waterjet(SCAWJ)and unsubmerged abrasive waterjet(UAWJ) by impinging sandstone specimens. Moreover, the effects of jet pressure, standoff distance, abrasive flow rate and concentration were studied by evaluating the specific energy consumption, and the area, depth, and mass loss of the eroded specimen. The results show that the artificially generated submerged environment in UCAWJ is able to enhance the rock breaking performance under the same operating parameters. Furthermore, the rock breaking performance of UCAWJ is much better at higher jet pressures and smaller standoff distances when compared with UAWJ. The greatest rock breaking ability of UCAWJ appears at jet pressure of 50 MPa and standoff distance of 32 mm, with the mass loss of sandstone increased by 370.6% and the energy dissipation decreased by 75.8%. In addition, under the experimental conditions the optimal abrasive flow rate and concentration are 76.5 m L/min and 3%, respectively.展开更多
基金financially supported by the National Natural Science Foundation of China (Nos.52175245 and 52274093)the Natural Science Foundation of Hubei Province (No.2021CFB462)the Knowledge Innovation Special Project of Wuhan (whkxjsj007)。
文摘Unsubmerged cavitating abrasive waterjet(UCAWJ)has been shown to artificially create a submerged environment that produces shear cavitation,which effectively enhances rock-breaking performance.The shear cavitation generation and collapse intensity depend on the pressure difference between the intermediate high-speed abrasive waterjet and the coaxial low-speed waterjet.However,the effect of the pressure of the coaxial low-speed waterjet is pending.For this purpose,the effect of low-speed waterjet pressure on rock-breaking performance at different standoff distances was experimentally investigated,and the effects of erosion time and ruby nozzle diameter on erosion performance were discussed.Finally,the micromorphology of the sandstone was observed at different locations.The results show that increased erosion time and ruby nozzle diameter can significantly improve the rock-breaking performance.At different standoff distances,the mass loss increases first and then decreases with the increase of low-speed waterjet pressure,the maximum mass loss is 10.4 g at a low-speed waterjet pressure of0.09 MPa.The surface morphology of cavitation erosion was measured using a 3D profiler,the increase in both erosion depth and surface roughness indicated a significant increase in the intensity of the shear cavitation collapse.At a low-speed waterjet pressure of 0.18 MPa,the cavitation erosion surface depth can reach 600μm with a roughness of 127μm.
基金financially supported by the National Natural Science Foundation of China (Nos. 52175245 and 52274093)the Natural Science Foundation of Hubei Province (No. 2021CFB462)。
文摘To improve the rock breaking ability, cavitating waterjet and abrasive waterjet are combined by using a coaxial low-speed waterjet generated around the periphery of a high-speed abrasive waterjet, and a new type of waterjet called unsubmerged cavitating abrasive waterjet(UCAWJ) is thus produced. The rock breaking performance of UCAWJ was compared with submerged cavitating abrasive waterjet(SCAWJ)and unsubmerged abrasive waterjet(UAWJ) by impinging sandstone specimens. Moreover, the effects of jet pressure, standoff distance, abrasive flow rate and concentration were studied by evaluating the specific energy consumption, and the area, depth, and mass loss of the eroded specimen. The results show that the artificially generated submerged environment in UCAWJ is able to enhance the rock breaking performance under the same operating parameters. Furthermore, the rock breaking performance of UCAWJ is much better at higher jet pressures and smaller standoff distances when compared with UAWJ. The greatest rock breaking ability of UCAWJ appears at jet pressure of 50 MPa and standoff distance of 32 mm, with the mass loss of sandstone increased by 370.6% and the energy dissipation decreased by 75.8%. In addition, under the experimental conditions the optimal abrasive flow rate and concentration are 76.5 m L/min and 3%, respectively.