This paper presents developing soft sensors for polymer melt index in an industrial polymerization process by using deep belief network(DBN).The important quality variable melt index of polypropylene is hard to measur...This paper presents developing soft sensors for polymer melt index in an industrial polymerization process by using deep belief network(DBN).The important quality variable melt index of polypropylene is hard to measure in industrial processes.Lack of online measurement instruments becomes a problem in polymer quality control.One effective solution is to use soft sensors to estimate the quality variables from process data.In recent years,deep learning has achieved many successful applications in image classification and speech recognition.DBN as one novel technique has strong generalization capability to model complex dynamic processes due to its deep architecture.It can meet the demand of modelling accuracy when applied to actual processes.Compared to the conventional neural networks,the training of DBN contains a supervised training phase and an unsupervised training phase.To mine the valuable information from process data,DBN can be trained by the process data without existing labels in an unsupervised training phase to improve the performance of estimation.Selection of DBN structure is investigated in the paper.The modelling results achieved by DBN and feedforward neural networks are compared in this paper.It is shown that the DBN models give very accurate estimations of the polymer melt index.展开更多
基金supported by National Natural Science Foundation of China (No. 61673236)the European Union (No. PIRSES-GA-2013-612230)
文摘This paper presents developing soft sensors for polymer melt index in an industrial polymerization process by using deep belief network(DBN).The important quality variable melt index of polypropylene is hard to measure in industrial processes.Lack of online measurement instruments becomes a problem in polymer quality control.One effective solution is to use soft sensors to estimate the quality variables from process data.In recent years,deep learning has achieved many successful applications in image classification and speech recognition.DBN as one novel technique has strong generalization capability to model complex dynamic processes due to its deep architecture.It can meet the demand of modelling accuracy when applied to actual processes.Compared to the conventional neural networks,the training of DBN contains a supervised training phase and an unsupervised training phase.To mine the valuable information from process data,DBN can be trained by the process data without existing labels in an unsupervised training phase to improve the performance of estimation.Selection of DBN structure is investigated in the paper.The modelling results achieved by DBN and feedforward neural networks are compared in this paper.It is shown that the DBN models give very accurate estimations of the polymer melt index.