期刊文献+
共找到31篇文章
< 1 2 >
每页显示 20 50 100
Genetic Algorithm Combined with the K-Means Algorithm:A Hybrid Technique for Unsupervised Feature Selection
1
作者 Hachemi Bennaceur Meznah Almutairy Norah Alhussain 《Intelligent Automation & Soft Computing》 SCIE 2023年第9期2687-2706,共20页
The dimensionality of data is increasing very rapidly,which creates challenges for most of the current mining and learning algorithms,such as large memory requirements and high computational costs.The literature inclu... The dimensionality of data is increasing very rapidly,which creates challenges for most of the current mining and learning algorithms,such as large memory requirements and high computational costs.The literature includes much research on feature selection for supervised learning.However,feature selection for unsupervised learning has only recently been studied.Finding the subset of features in unsupervised learning that enhances the performance is challenging since the clusters are indeterminate.This work proposes a hybrid technique for unsupervised feature selection called GAk-MEANS,which combines the genetic algorithm(GA)approach with the classical k-Means algorithm.In the proposed algorithm,a new fitness func-tion is designed in addition to new smart crossover and mutation operators.The effectiveness of this algorithm is demonstrated on various datasets.Fur-thermore,the performance of GAk-MEANS has been compared with other genetic algorithms,such as the genetic algorithm using the Sammon Error Function and the genetic algorithm using the Sum of Squared Error Function.Additionally,the performance of GAk-MEANS is compared with the state-of-the-art statistical unsupervised feature selection techniques.Experimental results show that GAk-MEANS consistently selects subsets of features that result in better classification accuracy compared to others.In particular,GAk-MEANS is able to significantly reduce the size of the subset of selected features by an average of 86.35%(72%–96.14%),which leads to an increase of the accuracy by an average of 3.78%(1.05%–6.32%)compared to using all features.When compared with the genetic algorithm using the Sammon Error Function,GAk-MEANS is able to reduce the size of the subset of selected features by 41.29%on average,improve the accuracy by 5.37%,and reduce the time by 70.71%.When compared with the genetic algorithm using the Sum of Squared Error Function,GAk-MEANS on average is able to reduce the size of the subset of selected features by 15.91%,and improve the accuracy by 9.81%,but the time is increased by a factor of 3.When compared with the machine-learning based methods,we observed that GAk-MEANS is able to increase the accuracy by 13.67%on average with an 88.76%average increase in time. 展开更多
关键词 Genetic algorithm unsupervised feature selection k-means clustering
下载PDF
A NEW UNSUPERVISED CLASSIFICATION ALGORITHM FOR POLARIMETRIC SAR IMAGES BASED ON FUZZY SET THEORY 被引量:2
2
作者 Fu Yusheng Xie Yan Pi Yiming Hou Yinming 《Journal of Electronics(China)》 2006年第4期598-601,共4页
In this letter, a new method is proposed for unsupervised classification of terrain types and man-made objects using POLarimetric Synthetic Aperture Radar (POLSAR) data. This technique is a combi-nation of the usage o... In this letter, a new method is proposed for unsupervised classification of terrain types and man-made objects using POLarimetric Synthetic Aperture Radar (POLSAR) data. This technique is a combi-nation of the usage of polarimetric information of SAR images and the unsupervised classification method based on fuzzy set theory. Image quantization and image enhancement are used to preprocess the POLSAR data. Then the polarimetric information and Fuzzy C-Means (FCM) clustering algorithm are used to classify the preprocessed images. The advantages of this algorithm are the automated classification, its high classifica-tion accuracy, fast convergence and high stability. The effectiveness of this algorithm is demonstrated by ex-periments using SIR-C/X-SAR (Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar) data. 展开更多
关键词 Radar polarimetry Synthetic Aperture Radar (SAR) fuzzy set theory unsupervised classification Image quantization Image enhancement fuzzy C-Means (FCM) clustering algorithm Membership function
下载PDF
An Approach to Unsupervised Character Classification Based on Similarity Measure in Fuzzy Model
3
作者 卢达 钱忆平 +1 位作者 谢铭培 浦炜 《Journal of Southeast University(English Edition)》 EI CAS 2002年第4期370-376,共7页
This paper presents a fuzzy logic approach to efficiently perform unsupervised character classification for improvement in robustness, correctness and speed of a character recognition system. The characters are first ... This paper presents a fuzzy logic approach to efficiently perform unsupervised character classification for improvement in robustness, correctness and speed of a character recognition system. The characters are first split into eight typographical categories. The classification scheme uses pattern matching to classify the characters in each category into a set of fuzzy prototypes based on a nonlinear weighted similarity function. The fuzzy unsupervised character classification, which is natural in the repre... 展开更多
关键词 fuzzy model weighted fuzzy similarity measure unsupervised character classification matching algorithm classification hierarchy
下载PDF
An Approximation Algorithm Based on Seeding Algorithm for Fuzzy k-Means Problem with Penalties
4
作者 Wen-Zhao Liu Min Li 《Journal of the Operations Research Society of China》 EI CSCD 2024年第2期387-409,共23页
As a classic NP-hard problem in machine learning and computational geometry,the k-means problem aims to partition the given dataset into k clusters according to the minimal squared Euclidean distance.Different from k-... As a classic NP-hard problem in machine learning and computational geometry,the k-means problem aims to partition the given dataset into k clusters according to the minimal squared Euclidean distance.Different from k-means problem and most of its variants,fuzzy k-means problem belongs to the soft clustering problem,where each given data point has relationship to every center point.Compared to fuzzy k-means problem,fuzzy k-means problem with penalties allows that some data points need not be clustered instead of being paid penalties.In this paper,we propose an O(αk In k)-approximation algorithm based on seeding algorithm for fuzzy k-means problem with penalties,whereαinvolves the ratio of the maximal penalty value to the minimal one.Furthermore,we implement numerical experiments to show the effectiveness of our algorithm. 展开更多
关键词 Approximation algorithm Seeding algorithm fuzzy k-means problem with penalties
原文传递
A Tradeoff Between Accuracy and Speed for K-Means Seed Determination
5
作者 Farzaneh Khorasani Morteza Mohammadi Zanjireh +1 位作者 Mahdi Bahaghighat Qin Xin 《Computer Systems Science & Engineering》 SCIE EI 2022年第3期1085-1098,共14页
With a sharp increase in the information volume,analyzing and retrieving this vast data volume is much more essential than ever.One of the main techniques that would be beneficial in this regard is called the Clusteri... With a sharp increase in the information volume,analyzing and retrieving this vast data volume is much more essential than ever.One of the main techniques that would be beneficial in this regard is called the Clustering method.Clustering aims to classify objects so that all objects within a cluster have similar features while other objects in different clusters are as distinct as possible.One of the most widely used clustering algorithms with the well and approved performance in different applications is the k-means algorithm.The main problem of the k-means algorithm is its performance which can be directly affected by the selection in the primary clusters.Lack of attention to this crucial issue has consequences such as creating empty clusters and decreasing the convergence time.Besides,the selection of appropriate initial seeds can reduce the cluster’s inconsistency.In this paper,we present a new method to determine the initial seeds of the k-mean algorithm to improve the accuracy and decrease the number of iterations of the algorithm.For this purpose,a new method is proposed considering the average distance between objects to determine the initial seeds.Our method attempts to provide a proper tradeoff between the accuracy and speed of the clustering algorithm.The experimental results showed that our proposed approach outperforms the Chithra with 1.7%and 2.1%in terms of clustering accuracy for Wine and Abalone detection data,respectively.Furthermore,achieved results indicate that comparing with the Reverse Nearest Neighbor(RNN)search approach,the proposed method has a higher convergence speed. 展开更多
关键词 Data clustering k-means algorithm information retrieval outlier detection clustering accuracy unsupervised learning
下载PDF
Hybrid Clustering Using Firefly Optimization and Fuzzy C-Means Algorithm
6
作者 Krishnamoorthi Murugasamy Kalamani Murugasamy 《Circuits and Systems》 2016年第9期2339-2348,共10页
Classifying the data into a meaningful group is one of the fundamental ways of understanding and learning the valuable information. High-quality clustering methods are necessary for the valuable and efficient analysis... Classifying the data into a meaningful group is one of the fundamental ways of understanding and learning the valuable information. High-quality clustering methods are necessary for the valuable and efficient analysis of the increasing data. The Firefly Algorithm (FA) is one of the bio-inspired algorithms and it is recently used to solve the clustering problems. In this paper, Hybrid F-Firefly algorithm is developed by combining the Fuzzy C-Means (FCM) with FA to improve the clustering accuracy with global optimum solution. The Hybrid F-Firefly algorithm is developed by incorporating FCM operator at the end of each iteration in FA algorithm. This proposed algorithm is designed to utilize the goodness of existing algorithm and to enhance the original FA algorithm by solving the shortcomings in the FCM algorithm like the trapping in local optima and sensitive to initial seed points. In this research work, the Hybrid F-Firefly algorithm is implemented and experimentally tested for various performance measures under six different benchmark datasets. From the experimental results, it is observed that the Hybrid F-Firefly algorithm significantly improves the intra-cluster distance when compared with the existing algorithms like K-means, FCM and FA algorithm. 展开更多
关键词 CLUSTERING OPTIMIZATION k-means fuzzy C-Means Firefly algorithm F-Firefly
下载PDF
P-ROCK: A Sustainable Clustering Algorithm for Large Categorical Datasets
7
作者 Ayman Altameem Ramesh Chandra Poonia +2 位作者 Ankit Kumar Linesh Raja Abdul Khader Jilani Saudagar 《Intelligent Automation & Soft Computing》 SCIE 2023年第1期553-566,共14页
Data clustering is crucial when it comes to data processing and analytics.The new clustering method overcomes the challenge of evaluating and extracting data from big data.Numerical or categorical data can be grouped.... Data clustering is crucial when it comes to data processing and analytics.The new clustering method overcomes the challenge of evaluating and extracting data from big data.Numerical or categorical data can be grouped.Existing clustering methods favor numerical data clustering and ignore categorical data clustering.Until recently,the only way to cluster categorical data was to convert it to a numeric representation and then cluster it using current numeric clustering methods.However,these algorithms could not use the concept of categorical data for clustering.Following that,suggestions for expanding traditional categorical data processing methods were made.In addition to expansions,several new clustering methods and extensions have been proposed in recent years.ROCK is an adaptable and straightforward algorithm for calculating the similarity between data sets to cluster them.This paper aims to modify the algo-rithm by creating a parameterized version that takes specific algorithm parameters as input and outputs satisfactory cluster structures.The parameterized ROCK algorithm is the name given to the modified algorithm(P-ROCK).The proposed modification makes the original algorithm moreflexible by using user-defined parameters.A detailed hypothesis was developed later validated with experimental results on real-world datasets using our proposed P-ROCK algorithm.A comparison with the original ROCK algorithm is also provided.Experiment results show that the proposed algorithm is on par with the original ROCK algorithm with an accuracy of 97.9%.The proposed P-ROCK algorithm has improved the runtime and is moreflexible and scalable. 展开更多
关键词 ROCK k-means algorithm clustering approaches unsupervised learning K-histogram
下载PDF
A Hybrid Multifarious Clustering Algorithm for the Analysis of Memmogram Images
8
作者 T. Velmurugan E. Venkatesan 《Journal of Computer and Communications》 2019年第12期136-151,共16页
A number of clustering algorithms were used to analyze many databases in the field of image clustering. The main objective of this research work was to perform a comparative analysis of the two of the existing partiti... A number of clustering algorithms were used to analyze many databases in the field of image clustering. The main objective of this research work was to perform a comparative analysis of the two of the existing partitions based clustering algorithms and a hybrid clustering algorithm. The results verification done by using classification algorithms via its accuracy. The perfor-mance of clustering and classification algorithms were carried out in this work based on the tumor identification, cluster quality and other parameters like run time and volume complexity. Some of the well known classification algorithms were used to find the accuracy of produced results of the clustering algorithms. The performance of the clustering algorithms proved mean-ingful in many domains, particularly k-Means, FCM. In addition, the proposed multifarious clustering technique has revealed their efficiency in terms of performance in predicting tumor affected regions in mammogram images. The color images are converted in to gray scale images and then it is processed. Finally, it is identified the best method for the analysis of finding tumor in breast images. This research would be immensely useful to physicians and radiologist to identify cancer affected area in the breast. 展开更多
关键词 MEDICAL IMAGES HYBRID Clusteing algorithm k-means algorithm fuzzy C Means algorithm Classification algorithms
下载PDF
一种具有缺失数据的无监督ReliefF特征选择算法 被引量:3
9
作者 薛露宇 宋燕 《小型微型计算机系统》 CSCD 北大核心 2023年第7期1441-1448,共8页
目前,大多数特征选择算法是针对完整数据集的.而面对缺失及无标签数据集时,多数特征选择算法是无效的.为了解决缺失及无标签数据集的特征选择问题,本文提出了一种基于加权FCM,融合互信息同时交替更新特征权重的ReliefF算法(WFCM-IRelief... 目前,大多数特征选择算法是针对完整数据集的.而面对缺失及无标签数据集时,多数特征选择算法是无效的.为了解决缺失及无标签数据集的特征选择问题,本文提出了一种基于加权FCM,融合互信息同时交替更新特征权重的ReliefF算法(WFCM-IReliefF,Improved ReliefF Based on WFCM).首先,对均值预填补的完整数据集利用FCM算法进行无监督学习,从而找到样本近邻;其次,将ReliefF算法计算得到的特征权重代入加权FCM算法中,解决原始空间与特征空间的不同造成的聚类效果不佳的问题,通过加权FCM算法和ReliefF算法交替更新得到关键特征;再者,对特征选择后的数据集利用矩阵分解技术改善对缺失数据的预填补.最后,利用多个UCI公共数据集的对比实验,验证了本文提出的算法与其他对比算法相比有较为满意的效果. 展开更多
关键词 特征选择 矩阵分解 模糊C均值聚类 无监督学习
下载PDF
一种改进的模糊Wishart-PSO极化SAR影像智能聚类算法
10
作者 朱腾 高照忠 +2 位作者 申晨 黄铁兰 周惠苑 《测绘通报》 CSCD 北大核心 2023年第6期88-92,共5页
针对极化SAR影像聚类精度不高、极化参数数据量大、计算复杂的问题,本文提出了基于改进模糊Wishart距离的极化SAR影像粒子群智能聚类方法。该方法首先针对极化SAR数据分布,结合模糊划分改进传统Wishart聚类评价准则,减小孤立点噪声影响... 针对极化SAR影像聚类精度不高、极化参数数据量大、计算复杂的问题,本文提出了基于改进模糊Wishart距离的极化SAR影像粒子群智能聚类方法。该方法首先针对极化SAR数据分布,结合模糊划分改进传统Wishart聚类评价准则,减小孤立点噪声影响;然后根据极化散射机理完成聚类初始划分;最后在迭代寻优步骤引入粒子群优化框架,提高聚类中心有效性与分类精度。试验分别采用L波段AIRSAR数据及X波段高分辨率极化SAR数据验证了模糊Wishart-PSO聚类算法的有效性,分类结果较传统的H/α-Wishart方法合理性明显提高,聚类精度可达90%。 展开更多
关键词 粒子群优化算法 模糊集 极化SAR 非监督分类 Wishart距离
下载PDF
基于核方法的模糊聚类算法 被引量:75
11
作者 伍忠东 高新波 谢维信 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2004年第4期533-537,共5页
将核方法的思想推广到模糊C 均值算法,构造了基于核函数的模糊核C 均值算法,使其能够聚类非超球体数据、被噪声污染数据、多种模式原型混合数据、不对称数据等多种数据结构,并指出一阶多项式模糊核C 均值算法等价于模糊C 均值算法.人工... 将核方法的思想推广到模糊C 均值算法,构造了基于核函数的模糊核C 均值算法,使其能够聚类非超球体数据、被噪声污染数据、多种模式原型混合数据、不对称数据等多种数据结构,并指出一阶多项式模糊核C 均值算法等价于模糊C 均值算法.人工和实际数据的实验结果表明,与模糊C 均值算法相比,模糊核C 均值算法在多种数据结构条件下可以有效地进行聚类. 展开更多
关键词 聚类分析 模糊C-均值 核方法 无监督学习
下载PDF
基于模糊模型相似测量的字符无监督分类法 被引量:3
12
作者 卢达 钱忆平 +1 位作者 谢铭培 浦炜 《计算机学报》 EI CSCD 北大核心 2002年第4期423-429,共7页
该文提出一种基于模糊模型相似测量的文本分析系统的字符预分类方法 ,用于对字符的无监督分类 ,以提高整个字符识别系统的速度、正确性和鲁棒性 .作者在字符印刷结构归类的基础上 ,采用模板匹配方法将各类字符分别转换成基于一非线性加... 该文提出一种基于模糊模型相似测量的文本分析系统的字符预分类方法 ,用于对字符的无监督分类 ,以提高整个字符识别系统的速度、正确性和鲁棒性 .作者在字符印刷结构归类的基础上 ,采用模板匹配方法将各类字符分别转换成基于一非线性加权相似函数的模糊样板集合 .模糊字符的无监督分类是字符匹配的一种自然范例并发展了加权模糊相似测量的研究 .该文讨论了该模糊模型的特性、模糊样板匹配的规则 ,并用于加快字符分类处理 ,经过字符分类 。 展开更多
关键词 模糊模型 加权模糊相似测量 字符无监督分类 匹配算法 分级归类 字符识别 字符匹配
下载PDF
制糖过程中递归模糊神经网络软测量技术 被引量:2
13
作者 宋春宁 刘少东 林小峰 《自动化与仪表》 北大核心 2013年第6期28-32,共5页
糖厂澄清工段过程包含复杂的物理和化学反应,具有非线性、大滞后和不确定性的特点,难以建立精确的机理模型。常规神经网络建模是静态映射,实际应用中,权值的调节不能充分利用工业生产现场的动态数据信息,效果不理想。为此,提出了含有递... 糖厂澄清工段过程包含复杂的物理和化学反应,具有非线性、大滞后和不确定性的特点,难以建立精确的机理模型。常规神经网络建模是静态映射,实际应用中,权值的调节不能充分利用工业生产现场的动态数据信息,效果不理想。为此,提出了含有递归环节的T-S模糊神经网络(TSRFNN)结构,采用混沌BP学习算法引入非线性自反馈项获得复杂系统的动力学特征,通过与常规T-S模糊神经网络(TSFNN)在糖厂澄清工段过程的建模与仿真试验中进行比较,结果表明,在处理这类时变复杂系统建模方面TSRFNN表现出更加优越的性能,获得了非线性系统的全局最优模型。 展开更多
关键词 递归神经网络 T—S模糊模型 非线性系统辨识 无监督聚类算法 混沌BP算法
下载PDF
基于独立分量分析的极化SAR图像非监督分类方法 被引量:3
14
作者 付毓生 谢艳 +1 位作者 皮亦鸣 侯印鸣 《电波科学学报》 EI CSCD 北大核心 2007年第2期255-260,共6页
提出了一种针对极化合成孔径雷达(SAR)图像的新的分类方法——基于独立分量分析(ICA)的非监督分类方法。该方法将ICA和基于模糊集理论的非监督分类方法结合起来。用ICA方法对原始极化SAR图像进行特征提取,并用模糊C均值(FCM)算法对提取... 提出了一种针对极化合成孔径雷达(SAR)图像的新的分类方法——基于独立分量分析(ICA)的非监督分类方法。该方法将ICA和基于模糊集理论的非监督分类方法结合起来。用ICA方法对原始极化SAR图像进行特征提取,并用模糊C均值(FCM)算法对提取出的独立分量图像进行分类。该算法可对极化SAR图像进行自动分类,并减少由相干斑噪声所引起的分类错误,且其收敛速度快、稳定性高。采用SIR-C/X-SAR数据的试验证明了该算法的有效性。 展开更多
关键词 雷达极化 合成孔径雷达 独立分量分析 主分量分析 峰起度 非监督分类 模糊C均值算法
下载PDF
模糊聚类无监督算法在图像识别中的应用 被引量:5
15
作者 磨莉 李龙龙 舒蕾 《自动化技术与应用》 2020年第1期121-124,159,共5页
本文就模糊C均值聚类算法的优势与缺陷为主要依据,提出了一种模糊聚类无监督算法,切实应用于图像分割。并提出了基于Polysegment快速分析纹理图像的方法明确聚类数目,在此基础上利用模糊聚类无监督算法获取最终分割结果。通过实验结果表... 本文就模糊C均值聚类算法的优势与缺陷为主要依据,提出了一种模糊聚类无监督算法,切实应用于图像分割。并提出了基于Polysegment快速分析纹理图像的方法明确聚类数目,在此基础上利用模糊聚类无监督算法获取最终分割结果。通过实验结果表明,模糊聚类无监督算法在图像分割中使用所获得的分割结果可以在很大程度避免图像纹理对分割结果的影响,有效分割目标图像与背景图像,精确度较高,而且对不同图像分割的精确性,幅值变化相对稳定,是一种非常科学有效的图像分割法,值得大力推广应用。 展开更多
关键词 模糊聚类 无监督算法 图像识别 图像分割
下载PDF
基于Dignet无监督学习聚类算法的智能火灾探测 被引量:1
16
作者 李权威 宛田宾 +1 位作者 秦俊 廖光煊 《中国科学技术大学学报》 CAS CSCD 北大核心 2009年第7期769-776,782,共9页
介绍了一种基于Dignet ANN无监督学习聚类算法和自适应模糊控制算法的智能火灾探测算法模型.详细阐述了算法模型的思想和实现,给出了环境模式阈值自适应的方法和简单的多类型火灾探测器探测数据融合的方法,较好地解决了环境阈值的自适... 介绍了一种基于Dignet ANN无监督学习聚类算法和自适应模糊控制算法的智能火灾探测算法模型.详细阐述了算法模型的思想和实现,给出了环境模式阈值自适应的方法和简单的多类型火灾探测器探测数据融合的方法,较好地解决了环境阈值的自适应问题.在实验室条件下利用欧洲标准火对算法进行了检测,结果表明该智能算法可以有效地对火灾进行探测. 展开更多
关键词 神经网络 Dignet 无监督学习 自适应模糊算法 智能火灾探测 数据融合
下载PDF
基于CSA无监督模糊聚类算法的异常检测方法 被引量:1
17
作者 鲜继清 郎风华 《北京邮电大学学报》 EI CAS CSCD 北大核心 2005年第4期103-106,共4页
为解决模糊k-均值算法对初始化敏感及易陷入局部极值的不足,提出了基于克隆选择算法(CSA)的无监督模糊聚类异常入侵检测方法.应用结合了具有进化搜索、全局搜索、随机搜索和局部搜索特点的克隆算子快速得到了全局最优聚类,并应用模糊检... 为解决模糊k-均值算法对初始化敏感及易陷入局部极值的不足,提出了基于克隆选择算法(CSA)的无监督模糊聚类异常入侵检测方法.应用结合了具有进化搜索、全局搜索、随机搜索和局部搜索特点的克隆算子快速得到了全局最优聚类,并应用模糊检测算法检测网络中的异常行为模式.该方法的优点是不需要人工对训练集分类,并且可以检测出未知的攻击.仿真试验表明,该方法不但能检测出未知的攻击,而且具有较低的误报率和较高的检测率. 展开更多
关键词 异常检测 模糊聚类 克隆选择算法 无监督模糊k-均值算法
下载PDF
递归T-S模糊模型的神经网络
18
作者 宋春宁 刘少东 《化工自动化及仪表》 CAS 2013年第5期578-581,共4页
在常规T-S模糊神经网络的基础上加入动态递归元件,提出了递归T-S模糊模型的神经网络。在系统辨识中采用无监督聚类算法和动态反向传播算法训练该递归神经网络的参数,给出了该递归网络的逼近性证明。辨识效果与常规T-S模糊模型作比较,说... 在常规T-S模糊神经网络的基础上加入动态递归元件,提出了递归T-S模糊模型的神经网络。在系统辨识中采用无监督聚类算法和动态反向传播算法训练该递归神经网络的参数,给出了该递归网络的逼近性证明。辨识效果与常规T-S模糊模型作比较,说明递归T-S模糊模型的神经网络在非线性系统辨识中表现出更好的性能。 展开更多
关键词 递归神经网络 T-S模糊模型 非线性系统辨识建摸 模糊基函数 无监督聚类算法 动态BP算法
下载PDF
基于改进模糊C均值的软件缺陷预测研究 被引量:2
19
作者 张焯 徐玲 杨丹 《计算机工程与应用》 CSCD 北大核心 2015年第7期136-140,共5页
软件缺陷预测用来预测软件系统各个模块中是否存在BUG。传统的软件缺陷预测技术研究主要局限在有监督方法上,这类方法需要大量的已标注数据进行训练,但在工程实际中,这类标签数据不易获取。提出了一种结合模拟退火和遗传算法的改进模糊... 软件缺陷预测用来预测软件系统各个模块中是否存在BUG。传统的软件缺陷预测技术研究主要局限在有监督方法上,这类方法需要大量的已标注数据进行训练,但在工程实际中,这类标签数据不易获取。提出了一种结合模拟退火和遗传算法的改进模糊C均值算法,以解决模糊C均值容易受初始聚类中心影响而收敛到局部最优的缺陷。实验结果表明提出的方法在软件缺陷预测中具备高鲁棒性和较高预测精度。 展开更多
关键词 软件缺陷预测 模糊C均值 模拟退火 遗传算法 无监督
下载PDF
改进的模糊核C-均值算法 被引量:2
20
作者 王凯 贺国平 侯伟真 《微电子学与计算机》 CSCD 北大核心 2006年第12期141-143,146,共4页
将核方法的思想推广到模糊C-均值算法,提出一种改进的模糊核C-均值算法,改进的模糊核C-均值算法较以前的模糊核C-均值方法有更好的鲁棒性,不但可以在有野值存在的情况下得到较好的聚类结果,而且因为放松的隶属度条件,使最终聚类结果对... 将核方法的思想推广到模糊C-均值算法,提出一种改进的模糊核C-均值算法,改进的模糊核C-均值算法较以前的模糊核C-均值方法有更好的鲁棒性,不但可以在有野值存在的情况下得到较好的聚类结果,而且因为放松的隶属度条件,使最终聚类结果对预先确定的聚类数目不十分敏感。改进的模糊核C-均值算法在多种数据结构条件下可以有效地进行聚类。 展开更多
关键词 聚类分析 模糊C-均值 核方法 无监督学习
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部