This study assessed the treatment of azo dye Acid Orange 7 (AO7) containing wastewater by laboratory-scale up-flow constructed wetland (UFCW) with and without supplementary aeration. The supplementary aeration cou...This study assessed the treatment of azo dye Acid Orange 7 (AO7) containing wastewater by laboratory-scale up-flow constructed wetland (UFCW) with and without supplementary aeration. The supplementary aeration could effectively control the ratio of anaerobic and aerobic zones in the UFCW reactor. The results clearly show the supplementary aeration boosted the biodegradation of organic pollutants and mineralization of intermediate aromatic amines formed by AO7 degradation.展开更多
In this study,an up-flow anaerobic sludge blanket(UASB) reactor was applied to treat the high salinity wastewater from heavy oil production process.At a HRT of ≥24 h,the COD removal reached as high as 65.08% at an in...In this study,an up-flow anaerobic sludge blanket(UASB) reactor was applied to treat the high salinity wastewater from heavy oil production process.At a HRT of ≥24 h,the COD removal reached as high as 65.08% at an influent COD ranging from 350mg/L to 640mg/L.An average of 74.33% oil reduction was also achieved in the UASB reactor at an initial oil concentration between 112mg/L and 205mg/L.These results indicated that this heavy oil production related wastewater could be degraded efficiently in the UASB reactor.Granular sludge was formed in this reactor.In addition,two models,built on the back propagation neural network(BPNN) theory and linear regression techniques were developed for the simulation of the UASB system performance in the oily wastewater biodegradation.The average error of COD and oil removal was-0.65% and 0.84%,respectively.The results indicated that the models built on the BPNN theory were wellfitted to the detected data,and were able to simulate and predict the removal of COD and oil by the UASB reactor.展开更多
Treatment of sulfamethoxazole pharmaceutical wastewater is a big challenge.In this study,a series of anaerobic evaluation tests on pharmaceutical wastewater from different operating units was conducted to evaluate the...Treatment of sulfamethoxazole pharmaceutical wastewater is a big challenge.In this study,a series of anaerobic evaluation tests on pharmaceutical wastewater from different operating units was conducted to evaluate the feasibility of using anaerobic digestion,and the results indicated that the key refractory factor for anaerobic treatment of this wastewater was the high sulfate concentration.A laboratory-scale up-flow anaerobic sludge blanket(UASB)reactor was operated for 195 days to investigate the effects of the influent chemical oxygen demand(COD),organic loading rate(OLR),and COD/SO_(4)^(2-) ratio on the biodegradation of sulfamethoxazole in pharmaceutical wastewater and the process performance.The electron flow indicated that methanogenesis was still the dominant reaction although sulfidogenesis was enhanced with a stepwise decrease in the influent COD/SO_(4)^(2-) ratio.For the treated sulfamethoxazole pharmaceutical wastewater,a COD of 4983 mg/L(diluted by 50%),OLR of 2.5 kg COD/(m^(3)·d),and COD/SO_(4)^(2-) ratio of more than 5 were suitable for practical applications.The recovery performance indicated that the system could resume operation quickly even if production was halted for a few days.展开更多
The direct conversion of methanol into methane is the main process in anaerobic treatment of methanol containing wastewater.However,acetic acid can also be produced from methanol theoretically,which may probably resul...The direct conversion of methanol into methane is the main process in anaerobic treatment of methanol containing wastewater.However,acetic acid can also be produced from methanol theoretically,which may probably result in an abrupt pH drop and deteriorate the anaerobic process.Therefore,it is interesting to know what would really happen in an anaerobic reactor treating methanol wastewater.In this study,an up-flow anaerobic sludge bed(UASB)reactor treating methanol wastewater was operated.The chemical oxygen demand(COD),acetic acid and pH of the effluent were monitored at different loadings and influent alkalinity.The results showed that the anaerobic reactor could be operated steadily at as low as 119 mg/L of influent alkalinity and high organic loading rate with no obvious pH drops.Volatile fatty acids accumulation was not observed even at strong shock loadings.The microorganisms in the sludge at the end of the test became homogeneous in morphology,which were mainly spherical or spheroidal in shape.展开更多
In this study,the effects of organic sulfur on anaerobic biological processes were investigated by operating two up-flow anaerobic sludge blanket(UASB)reactors with sodium dodecylbenzene sulfonate(SDBS)as a representa...In this study,the effects of organic sulfur on anaerobic biological processes were investigated by operating two up-flow anaerobic sludge blanket(UASB)reactors with sodium dodecylbenzene sulfonate(SDBS)as a representative of organic sulfur.The results indicated that the specific methanogenic activity(SMA)and chemical oxygen demand(COD)removal efficiency of R2(with SDBS added)were higher than those of R1(without SDBS)when the COD/SO_(4)^(2−)ratio was above 5.0.However,when the COD/SO_(4)^(2−)ratio was lower than 5.0,the sulfate reduction efficiency of R2 was higher than that of R1.These results and the observed SDBS transformation efficiency in anaerobic reactors indicate that low concentrations of SDBS accelerate methane production and the continuous accumulation of SDBS does not weaken the reduction of sulfate.Similarly,the calculated electron flux for a COD/SO_(4)^(2−)ratio of 1.0 indicates that the utilization intensity of electrons by sulfate-reducing bacteria(SRB)in R2 was 36.48%higher than that of SRB in R1 and exceeded that of methane-producing archaea(MPA)under identical working conditions.Moreover,the addition of SDBS in R2 made sulfidogenesis the dominant reaction at low COD/SO_(4)^(2−),and Methanobacterium and Methanobrevibacter with H_(2)/CO_(2)as the substrate and Desulfomicrobium were the dominant MPA and SRB,respectively.However,methanogenesis was still the dominant reaction in R1,and Methanosaeta with acetic acid as the substrate and Desulfovibrio were the dominant MPA and SRB,respectively.展开更多
This study demonstrated the potential of single chamber up-flow membrane-less microbial fuel cell(UFML-MFC) in wastewater treatment and power generation. The purpose of this study was to evaluate and enhance the per...This study demonstrated the potential of single chamber up-flow membrane-less microbial fuel cell(UFML-MFC) in wastewater treatment and power generation. The purpose of this study was to evaluate and enhance the performance under different operational conditions which affect the chemical oxygen demand(COD) reduction and power generation,including the increase of KCl concentration(MFC1) and COD concentration(MFC2). The results showed that the increase of KCl concentration is an important factor in up-flow membrane-less MFC to enhance the ease of electron transfer from anode to cathode. The increase of COD concentration in MFC2 could led to the drop of voltage output due to the prompt of biofilm growth in MFC2 cathode which could increase the internal resistance. It also showed that the COD concentration is a vital issue in up-flow membrane-less MFC.Despite the COD reduction was up to 96%, the power output remained constrained.展开更多
基金supported by a grant-in-aid for scientific research from the Japan Society for the Promotion of Science(No.1907086).
文摘This study assessed the treatment of azo dye Acid Orange 7 (AO7) containing wastewater by laboratory-scale up-flow constructed wetland (UFCW) with and without supplementary aeration. The supplementary aeration could effectively control the ratio of anaerobic and aerobic zones in the UFCW reactor. The results clearly show the supplementary aeration boosted the biodegradation of organic pollutants and mineralization of intermediate aromatic amines formed by AO7 degradation.
基金the support provided by the Research & Technology Development Project of China National Petroleum Corporation (06A0302)Postdoctor Innovation Funds in Shandong Province (201002039)the Fundamental Research Funds for the Central Universities (27R1204023A)
文摘In this study,an up-flow anaerobic sludge blanket(UASB) reactor was applied to treat the high salinity wastewater from heavy oil production process.At a HRT of ≥24 h,the COD removal reached as high as 65.08% at an influent COD ranging from 350mg/L to 640mg/L.An average of 74.33% oil reduction was also achieved in the UASB reactor at an initial oil concentration between 112mg/L and 205mg/L.These results indicated that this heavy oil production related wastewater could be degraded efficiently in the UASB reactor.Granular sludge was formed in this reactor.In addition,two models,built on the back propagation neural network(BPNN) theory and linear regression techniques were developed for the simulation of the UASB system performance in the oily wastewater biodegradation.The average error of COD and oil removal was-0.65% and 0.84%,respectively.The results indicated that the models built on the BPNN theory were wellfitted to the detected data,and were able to simulate and predict the removal of COD and oil by the UASB reactor.
基金supported by the Fundamental Research Funds for the Central Universities(No.2015XKMS053).
文摘Treatment of sulfamethoxazole pharmaceutical wastewater is a big challenge.In this study,a series of anaerobic evaluation tests on pharmaceutical wastewater from different operating units was conducted to evaluate the feasibility of using anaerobic digestion,and the results indicated that the key refractory factor for anaerobic treatment of this wastewater was the high sulfate concentration.A laboratory-scale up-flow anaerobic sludge blanket(UASB)reactor was operated for 195 days to investigate the effects of the influent chemical oxygen demand(COD),organic loading rate(OLR),and COD/SO_(4)^(2-) ratio on the biodegradation of sulfamethoxazole in pharmaceutical wastewater and the process performance.The electron flow indicated that methanogenesis was still the dominant reaction although sulfidogenesis was enhanced with a stepwise decrease in the influent COD/SO_(4)^(2-) ratio.For the treated sulfamethoxazole pharmaceutical wastewater,a COD of 4983 mg/L(diluted by 50%),OLR of 2.5 kg COD/(m^(3)·d),and COD/SO_(4)^(2-) ratio of more than 5 were suitable for practical applications.The recovery performance indicated that the system could resume operation quickly even if production was halted for a few days.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.20376066 and 20436040).
文摘The direct conversion of methanol into methane is the main process in anaerobic treatment of methanol containing wastewater.However,acetic acid can also be produced from methanol theoretically,which may probably result in an abrupt pH drop and deteriorate the anaerobic process.Therefore,it is interesting to know what would really happen in an anaerobic reactor treating methanol wastewater.In this study,an up-flow anaerobic sludge bed(UASB)reactor treating methanol wastewater was operated.The chemical oxygen demand(COD),acetic acid and pH of the effluent were monitored at different loadings and influent alkalinity.The results showed that the anaerobic reactor could be operated steadily at as low as 119 mg/L of influent alkalinity and high organic loading rate with no obvious pH drops.Volatile fatty acids accumulation was not observed even at strong shock loadings.The microorganisms in the sludge at the end of the test became homogeneous in morphology,which were mainly spherical or spheroidal in shape.
基金the Fundamental Research Funds for the Central Universities(2019XKQYMS78)for the support of this study.
文摘In this study,the effects of organic sulfur on anaerobic biological processes were investigated by operating two up-flow anaerobic sludge blanket(UASB)reactors with sodium dodecylbenzene sulfonate(SDBS)as a representative of organic sulfur.The results indicated that the specific methanogenic activity(SMA)and chemical oxygen demand(COD)removal efficiency of R2(with SDBS added)were higher than those of R1(without SDBS)when the COD/SO_(4)^(2−)ratio was above 5.0.However,when the COD/SO_(4)^(2−)ratio was lower than 5.0,the sulfate reduction efficiency of R2 was higher than that of R1.These results and the observed SDBS transformation efficiency in anaerobic reactors indicate that low concentrations of SDBS accelerate methane production and the continuous accumulation of SDBS does not weaken the reduction of sulfate.Similarly,the calculated electron flux for a COD/SO_(4)^(2−)ratio of 1.0 indicates that the utilization intensity of electrons by sulfate-reducing bacteria(SRB)in R2 was 36.48%higher than that of SRB in R1 and exceeded that of methane-producing archaea(MPA)under identical working conditions.Moreover,the addition of SDBS in R2 made sulfidogenesis the dominant reaction at low COD/SO_(4)^(2−),and Methanobacterium and Methanobrevibacter with H_(2)/CO_(2)as the substrate and Desulfomicrobium were the dominant MPA and SRB,respectively.However,methanogenesis was still the dominant reaction in R1,and Methanosaeta with acetic acid as the substrate and Desulfovibrio were the dominant MPA and SRB,respectively.
基金the Science Fund MOSTI Grant (02-01-15-SF0201) for their support on this study
文摘This study demonstrated the potential of single chamber up-flow membrane-less microbial fuel cell(UFML-MFC) in wastewater treatment and power generation. The purpose of this study was to evaluate and enhance the performance under different operational conditions which affect the chemical oxygen demand(COD) reduction and power generation,including the increase of KCl concentration(MFC1) and COD concentration(MFC2). The results showed that the increase of KCl concentration is an important factor in up-flow membrane-less MFC to enhance the ease of electron transfer from anode to cathode. The increase of COD concentration in MFC2 could led to the drop of voltage output due to the prompt of biofilm growth in MFC2 cathode which could increase the internal resistance. It also showed that the COD concentration is a vital issue in up-flow membrane-less MFC.Despite the COD reduction was up to 96%, the power output remained constrained.
文摘泵站前池中存在复杂的水沙两相流结构,开机组合方式对水流流态与悬移质泥沙运动规律的影响尚不明确。针对该问题,该研究采用Mixture多相流理论和Realizable k-ε紊流模型,模拟不同开机组合条件下的泵站前池水沙运动,分析前池内各个漩涡流区域特征及其形成机理,预测泥沙淤积范围,同时利用多普勒流速剖面仪(acoustic doppler current profilers)等仪器对前池内流速与泥沙淤积进行测量,验证数值模拟结果。在此基础上,分析了典型正向前池泵站5组不同开机组合下的两相流流态,结果表明:前池内漩涡区域致使悬移质泥沙向正向前池边壁区域运移,漩涡流速下沉加速悬移质泥沙沉降;已经形成的泥沙淤积体对泵口流态影响存在明显空间异质性,中间区域水泵受影响程度低于两侧水泵,开机组合工况优化大幅减小了水流偏流角度(比原工况减少了3.35°),提高了前池流速均匀度(提高了了5.84个百分点),降低了前池内泥沙含量(减少了58.60%)。研究成果可为抑制漩涡区域与泥沙淤积对正向泵站前池的危害和泵站优化运行提供理论支撑。