期刊文献+
共找到13,977篇文章
< 1 2 250 >
每页显示 20 50 100
The changes in the annual distribution of mountain runoff during the period of 1965-2018 in Hexi Corridor,Northwest China
1
作者 Yan Luo ZhiXiang Lu +2 位作者 Qi Feng Meng Zhu JinBo Zhang 《Research in Cold and Arid Regions》 CSCD 2024年第2期73-83,共11页
The annual distribution characteristics of river runoff in arid regions have significant implications for water resource stability and management.Based on the mountain runoff data from 1965 to 2018,this study examines... The annual distribution characteristics of river runoff in arid regions have significant implications for water resource stability and management.Based on the mountain runoff data from 1965 to 2018,this study examines the annual change characteristics of monthly runoff of the Shiyang River Basin,Heihe River Basin,and Shule River Basin in the Hexi Corridor,Northwest China.Many indexes are used and analyzed,including the coefficient of variance,the complete regulation coefficient,the concentration degree and concentration period,the magnitude of change,the skewness coefficient,and the kurtosis coefficient of the annual distribution curves.The results reveal the following:(1)The inhomogeneity of annual runoff distribution in the Taolai River and the rivers to the west of it,except the Shiyou River,show an increasing trend.Conversely,the inhomogeneity of the rivers to the east of the Taolai River generally show a downward trend,but the coefficient of variance value is still very high.(2)In the Shiyang River Basin,the annual distribution of the concentration period is characterized by a relatively discrete pattern.Conversely,the Heihe River Basin exhibits a relatively concentrated pattern,and the distribution pattern of the Shule River Basin is quite different.Notably,all concentration periods in the three basins have shifted backward after the 2000s.(3)The Shiyang River Basin exhibits disordered annual distribution curves of runoff in different years.In contrast,the Heihe River Basin presents a typical‘single-peak’pattern with a prominent right-skewed.The Shule River Basin has regular distribution curves,with a gradually significant‘double-peak’pattern from east to west.Overall,there has been a slight change in runoff in the Shiyang River Basin,while the Heihe River Basin and Shule River Basin have experienced significant increases in runoff.The annual distribution curves of runoff in the Liyuan River and the rivers to the east of it exhibit a gentle peak pattern,and the appearance probability of extreme runoff during the year is low.Conversely,the rivers to the west of the Liyuan River,excluding the Danghe River,display a sharp peak and thick tail pattern,indicating that the appearance probability of extreme runoff during the year is high.These findings have practical implications for the planning and management of water resources in the Hexi Corridor.Moreover,they provide a solid foundation for predicting future changes in regional water resources. 展开更多
关键词 Hexi Corridor Inland rivers Mountain runoff Annual distribution characteristics of runoff
下载PDF
Straw mulching alters the composition and loss of dissolved organic matter in farmland surface runoff by inhibiting the fragmentation of soil small macroaggregates
2
作者 Shanshan Cai Lei Sun +7 位作者 Wei Wang Yan Li Jianli Ding Liang Jin Yumei Li Jiuming Zhang Jingkuan Wang Dan Wei 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第5期1703-1717,共15页
Straw mulching is a widespread practice for reducing the soil carbon loss caused by erosion.However,the effects of straw mulching on dissolved organic matter(DOM)runoff loss from black soil are not well studied.How st... Straw mulching is a widespread practice for reducing the soil carbon loss caused by erosion.However,the effects of straw mulching on dissolved organic matter(DOM)runoff loss from black soil are not well studied.How straw mulching affects the composition and loss of runoff DOM by changing soil aggregates remains largely unclear.Here,a straw mulching treatment was compared to a no mulching treatment(as a control)on sloping farmland with black soil erosion in Northeast China.We divided the soil into large macroaggregates(>2 mm),small macroaggregates(0.25-2 mm),and microaggregates(<0.25 mm).After five rain events,the effects of straw mulching on the concentration(characterized by dissolved organic carbon(DoC)and composition(analyzed by fluorescence spectroscopy)of runoff and soil aggregate DOM were studied.The results showed that straw mulching reduced the runoff amount by 54.7%.Therefore,although straw mulching increased the average DOc concentration in runoff,it reduced the total runoff DOM loss by 48.3%.The composition of runoff DOM is similar to that of soil,as both contain humic-like acid and protein-like components.With straw mulching treatment,the protein-like components in small macroaggregates accumulated and the protein-like components in runoff declined with rain events.Fluorescence spectroscopy technology may help in understanding the hydrological paths of rain events by capturing the dynamic changes of runoff and soil DOM characteristics.A variation partitioning analysis(VPA)indicated that the DOM concentration and composition of microaggregates explained 68.2%of the change in runoff DOM from no mulching plots,while the change in runoff DOM from straw mulching plots was dominated by small macroaggregates at a rate of 55.1%.Taken together,our results demonstrated that straw mulching reduces the fragmentation of small macroaggregates and the loss of microaggregates,thus effecting DOM compositions in soil and reducing the DOM loss in runoff.These results provide a theoretical basis for reducing carbon loss in sloping farmland. 展开更多
关键词 dissolved organic matter black soil surface runoff AGGREGATES fluorescence spectrum
下载PDF
Assessment of runoff changes in the sub-basin of the upper reaches of the Yangtze River basin, China based on multiple methods
3
作者 WANG Xingbo ZHANG Shuanghu TIAN Yiman 《Journal of Arid Land》 SCIE CSCD 2024年第4期461-482,共22页
Quantitative assessment of the impact of climate variability and human activities on runoff plays a pivotal role in water resource management and maintaining ecosystem integrity.This study considered six sub-basins in... Quantitative assessment of the impact of climate variability and human activities on runoff plays a pivotal role in water resource management and maintaining ecosystem integrity.This study considered six sub-basins in the upper reaches of the Yangtze River basin,China,to reveal the trend of the runoff evolution and clarify the driving factors of the changes during 1956–2020.Linear regression,Mann-Kendall test,and sliding t-test were used to study the trend of the hydrometeorological elements,while cumulative distance level and ordered clustering methods were applied to identify mutation points.The contributions of climate change and human disturbance to runoff changes were quantitatively assessed using three methods,i.e.,the rainfall-runoff relationship method,slope variation method,and variable infiltration capacity(Budyko)hypothesis method.Then,the availability and stability of the three methods were compared.The results showed that the runoff in the upper reaches of the Yangtze River basin exhibited a decreasing trend from 1956 to 2020,with an abrupt change in 1985.For attribution analysis,the runoff series could be divided into two phases,i.e.,1961–1985(baseline period)and 1986–2020(changing period);and it was found that the rainfall-runoff relationship method with precipitation as the representative of climate factors had limited usability compared with the other two methods,while the slope variation and Budyko hypothesis methods had highly consistent results.Different factors showed different effects in the sub-basins of the upper reaches of the Yangtze River basin.Moreover,human disturbance was the main factor that contributed to the runoff changes,accounting for 53.0%–82.0%;and the contribution of climate factors to the runoff change was 17.0%–47.0%,making it the secondary factor,in which precipitation was the most representative climate factor.These results provide insights into how climate and anthropogenic changes synergistically influence the runoff of the upper reaches of the Yangtze River basin. 展开更多
关键词 economic belt runoff change influencing assessment CLIMATE human activities
下载PDF
Impacts of climate change and land cover factor on runoff in the Coastal Chinese Mainland region
4
作者 Song Song Ziqiang Ye +4 位作者 Zhijie Zhou Xiaowei Chuai Rui Zhou Jinwei Zou Yi Chen 《Geography and Sustainability》 CSCD 2024年第4期526-537,共12页
The increasingly frequent storms pose significant threats to the sustainable development of coastal regions,particularly in densely populated and economically vibrant areas.Comprehending the dynamics and intricate mec... The increasingly frequent storms pose significant threats to the sustainable development of coastal regions,particularly in densely populated and economically vibrant areas.Comprehending the dynamics and intricate mechanisms underlying runoff generation is crucial in the context of climate change and anthropogenic interference.Based on hydro-meteorological and land-use data from 1980 to 2018,this study investigates the runoff variation and its driving factors in the Coastal Chinese Mainland(CCM).The aims of this study are to reveal the temporal and spatial trends of runoff yield,to clarify the sensitivity of runoff in coastal cities to the integrated and individual parameters of climate change and anthropogenic interference,including precipitation(P),potential evapotranspiration(E0),and land cover factor(n),and to support the establishment of spatially tailored adaptation strategies.The results show that:(1)runoff has generally increased over the study period,particularly in regions such as the Yangtze River Delta,Shandong,and Guangxi,while it has decreased in western Liaoning and eastern Guangdong;(2)in the northern CCM with larger aridity index,the land cover factor plays a dominant role in runoff production,while in the wetter southern CCM,precipitation is more influential,and potential evapotranspiration mainly hinders runoff generation all over CCM;(3)urban expansion tends to negatively impact n,while the loss of grasslands and shrinkage of croplands tend to undermine the value of n.To facilitate the achievement of sustainable development goals in the CCM,it is imperative to introduce a more comprehensive and theoretical framework that encompasses the natural,technical,and social dimensions of human-water systems into traditional flood regulation and water resource management.This framework should promote interdisciplinary collaboration from an integrated perspective,to bridge the administrative and watershed boundaries,to effectively address the complex challenges posed by climate change and anthropogenic activities on runoff and water resources in coastal regions,and to enhance the realization of local sustainable development goals(UN SDGs). 展开更多
关键词 Coastal Chinese Mainland runoff production Elastic analysis Climate change Anthropogenic interference
下载PDF
Responses of runoff to changes in climate and human activities in the Liuhe River Basin, China
5
作者 LI Mingqian WANG He +3 位作者 DU Wei GU Hongbiao ZHOU Fanchao CHI Baoming 《Journal of Arid Land》 SCIE CSCD 2024年第8期1023-1043,共21页
Since the 1950s,numerous soil and water conservation measures have been implemented to control severe soil erosion in the Liuhe River Basin(LRB),China.While these measures have protected the upstream soil and water ec... Since the 1950s,numerous soil and water conservation measures have been implemented to control severe soil erosion in the Liuhe River Basin(LRB),China.While these measures have protected the upstream soil and water ecological environment,they have led to a sharp reduction in the downstream flow and the deterioration of the river ecological environment.Therefore,it is important to evaluate the impact of soil and water conservation measures on hydrological processes to assess long-term runoff changes.Using the Soil and Water Assessment Tool(SWAT)models and sensitivity analyses based on the Budyko hypothesis,this study quantitatively evaluated the effects of climate change,direct water withdrawal,and soil and water conservation measures on runoff in the LRB during different periods,including different responses to runoff discharge,hydrological regime,and flood processes.The runoff series were divided into a baseline period(1956-1969)and two altered periods,i.e.,period 1(1970-1999)and period 2(2000-2020).Human activities were the main cause of the decrease in runoff during the altered periods,contributing 86.03%(-29.61 mm),while the contribution of climate change was only 13.70%(-4.70 mm).The impact of climate change manifests as a decrease in flood volume caused by a reduction in precipitation during the flood season.Analysis of two flood cases indicated a 66.00%-84.00%reduction in basin runoff capacity due to soil and water conservation measures in the upstream area.Soil and water conservation measures reduced the peak flow and total flood volume in the upstream runoff area by 77.98%and 55.16%,respectively,even with nearly double the precipitation.The runoff coefficient in the reservoir area without soil and water conservation measures was 4.0 times that in the conservation area.These results contribute to the re-evaluation of soil and water conservation hydrological effects and provide important guidance for water resource planning and water conservation policy formulation in the LRB. 展开更多
关键词 runoff soil and water conservation climate variability FLOOD human activities Liuhe River Basin
下载PDF
Runoff change in the Yellow River Basin of China from 1960 to 2020 and its driving factors
6
作者 WANG Baoliang WANG Hongxiang +3 位作者 JIAO Xuyang HUANG Lintong CHEN Hao GUO Wenxian 《Journal of Arid Land》 SCIE CSCD 2024年第2期168-194,共27页
Analysing runoff changes and how these are affected by climate change and human activities is deemed crucial to elucidate the ecological and hydrological response mechanisms of rivers.The Indicators of Hydrologic Alte... Analysing runoff changes and how these are affected by climate change and human activities is deemed crucial to elucidate the ecological and hydrological response mechanisms of rivers.The Indicators of Hydrologic Alteration and the Range of Variability Approach(IHA-RVA)method,as well as the ecological indicator method,were employed to quantitatively assess the degree of hydrologic change and ecological response processes in the Yellow River Basin from 1960 to 2020.Using Budyko's water heat coupling balance theory,the relative contributions of various driving factors(such as precipitation,potential evapotranspiration,and underlying surface)to runoff changes in the Yellow River Basin were quantitatively evaluated.The results show that the annual average runoff and precipitation in the Yellow River Basin had a downwards trend,whereas the potential evapotranspiration exhibited an upwards trend from 1960 to 2020.In approximately 1985,it was reported that the hydrological regime of the main stream underwent an abrupt change.The degree of hydrological change was observed to gradually increase from upstream to downstream,with a range of 34.00%-54.00%,all of which are moderate changes.However,significant differences have been noted among different ecological indicators,with a fluctuation index of 90.00%at the outlet of downstream hydrological stations,reaching a high level of change.After the mutation,the biodiversity index of flow in the middle and lower reaches of the Yellow River was generally lower than that in the base period.The research results also indicate that the driving factor for runoff changes in the upper reach of the Yellow River Basin is mainly precipitation,with a contribution rate of 39.31%-54.70%.Moreover,the driving factor for runoff changes in the middle and lower reaches is mainly human activities,having a contribution rate of 63.70%-84.37%.These results can serve as a basis to strengthen the protection and restoration efforts in the Yellow River Basin and further promote the rational development and use of water resources in the Yellow River. 展开更多
关键词 Budyko theory hydrological regime attribution analysis ecological responses Yellow River climate change human activity runoff
下载PDF
Glacier area change and its impact on runoff in the Manas River Basin,Northwest China from 2000 to 2020
7
作者 WANG Tongxia CHEN Fulong +5 位作者 LONG Aihua ZHANG Zhengyong HE Chaofei LYU Tingbo LIU Bo HUANG Yanhao 《Journal of Arid Land》 SCIE CSCD 2024年第7期877-894,共18页
Understanding the distribution and dynamics of glaciers is of great significance to the management and allocation of regional water resources and socio-economic development in arid regions of Northwest China.In this s... Understanding the distribution and dynamics of glaciers is of great significance to the management and allocation of regional water resources and socio-economic development in arid regions of Northwest China.In this study,based on 36 Landsat images,we extracted the glacier boundaries in the Manas River Basin,Northwest China from 2000 to 2020 using eCognition combined with band operation,GIS(geographic information system)spatial overlay techniques,and manual visual interpretation.We further analyzed the distribution and variation characteristics of glacier area,and simulated glacial runoff using a distributed degree-day model to explore the regulation of runoff recharge.The results showed that glacier area in the Manas River Basin as a whole showed a downward trend over the past 21 a,with a decrease of 10.86%and an average change rate of–0.54%/a.With the increase in glacier scale,the number of smaller glaciers decreased exponentially,and the number and area of larger glaciers were relatively stable.Glacier area showed a normal distribution trend of increasing first and then decreasing with elevation.About 97.92%of glaciers were distributed at 3700–4800 m,and 48.11%of glaciers were observed on the northern and northeastern slopes.The retreat rate of glaciers was the fastest(68.82%)at elevations below 3800 m.There was a clear rise in elevation at the end of glaciers.Glaciers at different slope directions showed a rapid melting trend from the western slope to the southern slope then to the northern slope.Glacial runoff in the basin showed a fluctuating upward trend in the past 21 a,with an increase rate of 0.03×10^(8) m^(3)/a.The average annual glacial runoff was 4.80×10^(8) m^(3),of which 33.31%was distributed in the ablation season(June–September).The average annual contribution rate of glacial meltwater to river runoff was 35.40%,and glacial runoff accounted for 45.37%of the total runoff during the ablation season.In addition,precipitation and glacial runoff had complementary regulation patterns for river runoff.The findings can provide a scientific basis for water resource management in the Manas River Basin and other similar arid inland river basins. 展开更多
关键词 glacier area glacial runoff climate change glacier boundary extraction distributed degree-day model Manas River Basin
下载PDF
Comparative Assessment of Impacts of Future Climate Change on Runoff in Upper Daqinghe Basin,China
8
作者 INGABIRE Romaine CHANG Yuru +3 位作者 LIU Xia CAO Bo UMUGWANEZA Adeline SHEN Yanjun 《Chinese Geographical Science》 SCIE CSCD 2024年第3期564-578,共15页
Assessing runoff changes is of great importance especially its responses to the projected future climate change on local scale basins because such analyses are generally done on global and regional scales which may le... Assessing runoff changes is of great importance especially its responses to the projected future climate change on local scale basins because such analyses are generally done on global and regional scales which may lead to generalized conclusions rather than specific ones.Climate change affected the runoff variation in the past in the upper Daqinghe Basin,however,the climate was mainly considered uncertain and still needs further studies,especially its future impacts on runoff for better water resources management and planning.Integrated with a set of climate simulations,a daily conceptual hydrological model(MIKE11-NAM)was applied to assess the impact of climate change on runoff conditions in the Daomaguan,Fuping and Zijingguan basins in the upper Daqinghe Basin.Historical hydrological data(2008–2017)were used to evaluate the applicability of the MIKE11-NAM model.After bias correction,future projected climate change and its impacts on runoff(2025–2054)were analysed and compared to the baseline period(1985–2014)under three shared social economic pathways(SSP1-2.6,SSP2-4.5,and SSP5-8.5)scenarios from Coupled Model Intercomparison Project Phase 6(CMIP6)simulations.The MIKE-11 NAM model was applicable in all three Basins,with both R^(2)and Nash-Sutcliffe Efficiency coefficients greater than 0.6 at daily scale for both calibration(2009–2011)and validation(2012–2017)periods,respectively.Although uncertainties remain,temperature and precipitation are projected to increase compared to the baseline where higher increases in precipitation and temperature are projected to occur under SSP2-4.5 and SSP5-8.5 scenarios,respectively in all the basins.Precipitation changes will range between 12%–19%whereas temperature change will be 2.0℃–2.5℃ under the SSP2-4.5 and SSP5-8.5 scenarios,respectively.In addition,higher warming is projected to occur in colder months than in warmer months.Overall,the runoff of these three basins is projected to respond to projected climate changes differently because runoff is projected to only increase in the Fuping basin under SSP2-4.5 whereas decreases in both Daomaguan and Zijingguan Basins under all scenarios.This study’s findings could be important when setting mitigation strategies for climate change and water resources management. 展开更多
关键词 runoff climate change MIKE11-NAM model Coupled Model Intercomparison Project Phase 6(CMIP6) upper Daqinghe Basin China
下载PDF
Runoff Characteristics of Different Stands in Dongjiang Lake Reservoir Area
9
作者 Zhangquan ZENG Yaqin XIAO +5 位作者 Dewei XIAO Qinxiang SHAN Ni ZHANG Yang SONG Canming ZHANG Rui YANG 《Meteorological and Environmental Research》 2024年第4期36-38,共3页
Different forest stands in the Dongjiang Lake Reservoir area of Zixing were selected as the research objects to study the characteristics of runoff generation in different forest stands.The results showed that there w... Different forest stands in the Dongjiang Lake Reservoir area of Zixing were selected as the research objects to study the characteristics of runoff generation in different forest stands.The results showed that there was no significant difference in annual runoff among M3,M1,and M5,and no significant difference between each forest stand and the control.The order was M3(22.75 mm)>M1(21.77 mm)>M5(20.14 mm).Forest vegetation generates less runoff through vegetation restoration compared to the control,indicating that forest vegetation reconstruction and restoration are beneficial for soil and water conservation. 展开更多
关键词 Dongjiang Lake Reservoir area STAND Surface runoff Forest management
下载PDF
Adsorption characteristics of Pb from urban stormwater runoff by construction wastes 被引量:5
10
作者 杨丽琼 王建龙 +1 位作者 张晓然 车伍 《Journal of Southeast University(English Edition)》 EI CAS 2014年第2期212-219,共8页
Construction wastes were selected as the adsorbents and static and dynamic adsorption batch experiments were carried out to investigate the adsorption of Pb to construction wastes with different particle size gradatio... Construction wastes were selected as the adsorbents and static and dynamic adsorption batch experiments were carried out to investigate the adsorption of Pb to construction wastes with different particle size gradations in the simulated stormwater runoff system.The experimental results show that the pseudo-second-order kinetics model can better characterize the adsorption process of Pb than the pseudo-first-order kinetics model.The adsorption equilibrium data can be well fitted by the Freundlich isotherm model. The construction wastes with different tested size gradations can greatly remove Pb from stormwater runoff and their average removal rate can reach up to 99%.The construction wastes with narrow size distribution can better remove Pb but with worse permeability than those with wide size distribution. The particle size gradation of construction wastes greatly influences the equilibrium time rate and the capacity of Pb adsorption.The equilibrium adsorption rate and capacity are 18.1 μg/min and 5.5 μg/g respectively for the construction wastes with the size of 2.36 to 4.75 mm which are the greatest among the different size gradations.The present study provides a scientific basis for effectively controlling Pb pollution from stormwater runoff and the construction wastes resource utilization. 展开更多
关键词 stormwater runoff heavy metal construction waste ADSORPTION
下载PDF
Analysis on the Variations of Annual Runoff Distribution in the Weihe Basin 被引量:5
11
作者 杨美临 范晓梅 《Meteorological and Environmental Research》 CAS 2010年第6期91-94,共4页
With the impact of climate change and the increasing intensity of human activities,the hydrological regime had changed,including annual runoff distribution,which was related with water resources management and ecologi... With the impact of climate change and the increasing intensity of human activities,the hydrological regime had changed,including annual runoff distribution,which was related with water resources management and ecological construction. Based on the monthly runoff data for more than 40 years of the Beidao,Xianyang,Huaxian station on Weihe Basin,the annual distribution characteristics of runoff were studied. Several indices related to attributes of uneven,concentrate degree and variation amplitude were calculated,and the results showed that there had obvious fresh and drought seasonal changes in 1990s. The annual runoff distribution had changed a lot,mainly because of runoff decrease in the wet season. The Huaxian station,which locates at the upper reaches,had a higher unevenness,concentration and relative variation rate than that of the Beidao and Xianyang station. 展开更多
关键词 Weihe Basin runoff Annual distribution China
下载PDF
Influence of Vegetation Coverage on Surface Runoff and Soil Moisture in Rainy Season in Dry-hot Valley 被引量:7
12
作者 郭芬芬 南岭 +1 位作者 陈安强 刘刚才 《Agricultural Science & Technology》 CAS 2010年第4期138-143,共6页
[Objective]The research aimed to study the effects of vegetation coverage on the changes of soil moisture in rainy season in dry-hot valley.[Method]The surface runoff and soil moisture of slope with vegetation coverag... [Objective]The research aimed to study the effects of vegetation coverage on the changes of soil moisture in rainy season in dry-hot valley.[Method]The surface runoff and soil moisture of slope with vegetation coverage and bare land in rainy reason in Jinsha River at Yuanmou County of Yunnan Province were observed continuously.Moreover,the statistical analysis was made based on the observation data.[Result]The vegetation coverage could decrease surface runoff and the surface runoff on bare land(CK) was 22 times as the plot with vegetation coverage.The soil water content in 0-180 cm layer with vegetation coverage increased by 37.8% than bare land.The stability of soil moisture content in deep layer was enhanced and the physical properties stability of soil was maintained.The soil moisture content in different depth of soil had significant difference and the changes of soil moisture content were obviously different.[Conclusion]The vegetation coverage of slope could change the soil hydrology obviously and keep soil moisture at the higher level,especially at soil layer below 20 cm. 展开更多
关键词 Vegetation coverage Surface runoff Soil moisture Dry-hot valley
下载PDF
Dynamics of Slope Runoff and Soil Erosion of Different Forest Types in Karst Depression 被引量:6
13
作者 张喜 连宾 +2 位作者 尹洁 吴永波 崔迎春 《Agricultural Science & Technology》 CAS 2010年第3期166-171,共6页
[Objective] The research was aimed to study the dynamics of slope runoff and soil erosion in different forest types in karst depression.[Method] Precipitation observation sites at the bottom of karst depression and ru... [Objective] The research was aimed to study the dynamics of slope runoff and soil erosion in different forest types in karst depression.[Method] Precipitation observation sites at the bottom of karst depression and runoff observation sites in different forest types were established to monitor regularly the main indices changes of runoff and soil erosion at fixed position in 4 years.[Result] The surface runoff of different forest types appeared singer peak from February to November,with lowest valley from June to July.The runoff coefficient appeared double peaks from February to May and from July to September.The changing coefficient of runoff appeared three peaks from March to April,from July to August and from September to November.The silt concentration appeared one peak from March to May and The erosion modulus appeared double peaks from March to May and from June to August.Runoff showed annually reduced trend with the growth of forests and the development of vegetation layer's structure.There was a positive correlation between the runoff and its silt concentration in different forest types.Precipitation and evaporation had notable positive correlation with the runoff,and similar correlation but not marked with silt concentration.The fitting analysis results of surface runoff and erosion modulus showed that rocky desertification intensified the unevenness of surface runoff and increased the surface runoff and erosion modulus.The penetrability of surface soil in new planted forest was lower than that in young forest,and that in surface soil of different forest types was higher than in bottom soil.[Conclusion] The research provided theoretical basis for the biological management technologies of water and soil conservation and the control of karst rocky desertification in karst regions. 展开更多
关键词 Karst depression Forest types runoff Erosion modulus Affecting factors
下载PDF
Estimating runoff coefficient for quantity assessment of roof rainwater harvesting system 被引量:1
14
作者 张炜 李思敏 唐锋兵 《Journal of Southeast University(English Edition)》 EI CAS 2014年第2期220-224,共5页
In order to accurately estimate the runoff coefficient for the quantity assessment of the roof rainwater harvesting system RRHS great differences in the value of event runoff coefficient ψERC were observed by field m... In order to accurately estimate the runoff coefficient for the quantity assessment of the roof rainwater harvesting system RRHS great differences in the value of event runoff coefficient ψERC were observed by field monitoring under different roof types roof slope and material and diverse rainfall distributions rainfall depth and intensity in three years 2010 to 2012 in Handan Hebei China.The results indicate that the distribution of ψERC is more highly correlated with the event rainfall depth than other factors. The relationship between ψERC and the rainfall depth can be well represented by the piecewise linear function.Further based on the daily rainfall data over the period from 1960 to 2008 the value of the annual runoff coefficient ψARC is calculated. Although the total rainfall depth in each year is different ψARC in Handan can be considered as a constant 0.62 approximately. The results can be used for the quantity assessment and performance analysis of the RRHS. 展开更多
关键词 roof rainwater harvesting system event runoff coefficient annual runoff coefficient rainfall depth
下载PDF
Characteristics of Hg pollution in urban stormwater runoff in Nanjing city, China 被引量:2
15
作者 陈明 郑兆辉 +1 位作者 傅大放 张科峰 《Journal of Southeast University(English Edition)》 EI CAS 2014年第2期158-163,共6页
In order to assess the mercury Hg pollution in urban stormwater runoff in Nanjing 11 rainfall events in the Maqun region of Nanjing circle expressway were monitored and the events mean concentrations EMC of Hg and the... In order to assess the mercury Hg pollution in urban stormwater runoff in Nanjing 11 rainfall events in the Maqun region of Nanjing circle expressway were monitored and the events mean concentrations EMC of Hg and the impact of rainfall characteristics on Hg pollution in runoff were analyzed.Results show that the pollution of different Hg species is serious and total Hg THg dissolved Hg HgD and particulate Hg HgP are found to be in the range of 0.173 to 3.347 0.069 to 0.862 and 0.104 to 2.485μg/L respectively.The average EMC value of THg exceeds the Ⅴ class limitation value of Quality standards of surface water environment GB 3838-2002 of China. Hg in runoff mainly exists in particulate form and the concentrations of Hgre 0.250 to 2.821 μg/L are far more than those of Hg0 0.023 to 0.215 μg/L and Hg2+ 0.026 to 0.359 μg/L . The order of rainfall characteristics impacting on Hg pollution in runoff is dry periods 〉runoff time〉duration of rainfall〉storm intensity〉rainfall. 展开更多
关键词 Hg pollution urban runoff events mean concentrations (EMC) impact factor
下载PDF
Prediction on effectiveness of road sweeping for highway runoff pollution control 被引量:1
16
作者 王琳 卫宝立 冯美军 《Journal of Southeast University(English Edition)》 EI CAS 2014年第2期255-260,共6页
Binzhou section of Changshen highway was selected to study the effectiveness of road sweeping in decreasing the pollutant loads of highway runoff.With on-site continuous sampling the discharge rules of Cu Cd Pb and Zn... Binzhou section of Changshen highway was selected to study the effectiveness of road sweeping in decreasing the pollutant loads of highway runoff.With on-site continuous sampling the discharge rules of Cu Cd Pb and Zn are analyzed.The total and dissolved event mean concentrations of Cu Pb and Zn are calculated and the loads of heavy metals attached to particles sampled before and after rainfall are also studied.A test section on highway road was swept in different frequencies during a week and the amount of removed particles was measured.Based on the analysis of highway runoff and road sweeping a prediction equation is established to calculate the pollution control efficiency of the sweeping measure and the results indicate that the 1 time/week road sweeping method can remove 47.93% of dissolved Cu 46.87% of Pb and 44.21% of Zn. 展开更多
关键词 highway runoff particle adsorption roadsweeping PREDICTION
下载PDF
The runoff characteristics and harmonic analysis of the soil moisture dynamics in Robinia pseudoacacia stand 被引量:1
17
作者 高鹏 刘作新 陈伏生 《Journal of Forestry Research》 SCIE CAS CSCD 2003年第4期295-298,共4页
Robinia pseudoacacia stands act as a typical ecological protection forest in hilly semi-arid area of China. Two fields of surface runoff were separately set up in R. pseudoacacia stand and its clearcut area in the wes... Robinia pseudoacacia stands act as a typical ecological protection forest in hilly semi-arid area of China. Two fields of surface runoff were separately set up in R. pseudoacacia stand and its clearcut area in the western Liaoning Province (1850-12225 E, 4024-4234 N) for measuring the characteristics of runoff and sediment as well as soil moisture dynamics. Contractive analysis of the two land types showed that there existed a significant difference in volumes of runoff and sediment between the sites of R. pseudoacacia stand and its clearcut area. The runoff volume and sediment volume in clearcut area were much bigger than those in R. pseudoacacia stand, with an increase amount of 40%-177% for runoff and 180%-400% for sediment. Hydrograph of surface runoff of typical rainfall showed that the peak value of runoff in R. pseudoacacia stand was decreased by 1.0-2.5?0-3m3s-1 compared with that in its clearcut area, and the occurring time of peak value of runoff in R. pseudoacacia stand was 10-20 min later than that in its clearcut area. Harmonic analysis of soil moisture dynamics indicated that the soil moisture in R. pseudoacacia stand was 2.3 % higher than that in clearcut area, and the soil moisture both in R. pseudoacacia stand and its clearcut area could be divided into dry season and humid season and varied periodically with annual rainfall precipitation. It was concluded that R. pseudoacacia stand plays a very important role in storing water, increasing soil moisture, and reducing surface runoff and soil erosion. 展开更多
关键词 Hilly semi-arid area Robinia pseudoacacia stand runoff generation characteristics Soil moisture dynamics Harmonic analysis
下载PDF
Features of Runoff and Sediment Yield of Different Shrub-Grass Combination Modes for Highway Side Slope in Hilly Areas of Central Sichuan Province
18
作者 李妮 陈其兵 谭昌明 《Journal of Landscape Research》 2012年第2期1-4,共4页
[Objective] Indigenous plants with favorable water and soil conservation effects were screened for the shrub planting.[Method] Suining-Ziyang-Meishan Highway in the hilly areas of central Sichuan Province was taken fo... [Objective] Indigenous plants with favorable water and soil conservation effects were screened for the shrub planting.[Method] Suining-Ziyang-Meishan Highway in the hilly areas of central Sichuan Province was taken for example,through sorting out plant species investigated in the route planning,3 indigenous shrub species(Neosinocalamus affinis,Vitex negundo and Coriaria nepalensis) and 3 indigenous herbaceous species(Setaria viridis,Miscanthus floridulus,Artemisia argyi) were selected.Rainfall simulation experiment was adopted to compare runoff and sediment yields of different combination modes and ratios under constant rainfall intensity(20 mm/min).[Result] Different combination modes under constant rainfall intensity all showed better water and soil conservation effects than that of control group did.For example,runoff appeared 1'-4'05"later,sediment yield reduced by 6.56-33.86 g respectively.Among all combination modes,runoff and sediment yield showed great difference after 20 min of constant rainfall,V.negundo+S.viridis had the lowest runoff(1,700 ml) and sediment yield(60.71 g);C nepalensis+A. argyi had the highest runoff(1,920 ml) and sediment yield(84.02 g).[Conclusion] Given the same planting conditions such as side slope and seeding quantity,and also the same planting techniques,in the hilly areas of central Sichuan Province,the combination of V.negundo and S.viridis can greatly improve the water and soil conservation capacity of highway. 展开更多
关键词 HIGHWAY SIDE SLOPE Indigenous SHRUB runoff YIELD Sediment YIELD Water and soil Conservation
下载PDF
基于水量水质控制目标的LID组合方案评价
19
作者 冯皓天 李磊 +4 位作者 周哲 张良 仇金珠 宋强 刘俊 《水力发电》 CAS 2025年第1期22-27,共6页
为探究低影响开发(LID)对平原河网地区的城市径流和水质控制效果,以张家港中心城区的东北分区为例,提出针对LID设施组合方案雨洪控制效果的多控制目标综合评价体系。通过构建SWMM模型,模拟在1 a一遇、2 a一遇、5 a一遇、10 a一遇、20 a... 为探究低影响开发(LID)对平原河网地区的城市径流和水质控制效果,以张家港中心城区的东北分区为例,提出针对LID设施组合方案雨洪控制效果的多控制目标综合评价体系。通过构建SWMM模型,模拟在1 a一遇、2 a一遇、5 a一遇、10 a一遇、20 a一遇降雨情形下,不同LID设施组合方案的径流控制效果和污染物削减能力;并构建水文、水力、水质效应、成本投入4方面评价指标体系,采用灰色关联分析法对4种组合方案进行比选。结果表明,各项方案在低重现期降雨条件下均能发挥一定控制作用,但遭遇高重现期降雨时,控制作用受到限制。在4种组合方案中,包含透水铺装、绿色屋顶和雨水花园组合方案总体效益最佳,研究结果可为建设海绵城市提供一定理论依据。 展开更多
关键词 SWMM模型 LID设施 径流控制 综合赋权法 灰色关联分析
下载PDF
Persistent toxic substances in urban highway runoff in Shanghai
20
作者 张海平 滕俊伟 +1 位作者 姜月 尹秋晓 《Journal of Southeast University(English Edition)》 EI CAS 2014年第2期251-254,共4页
Urban highway runoff samples from seventeen rainfall events were collected in Shanghai in 2011. The concentrations of ten heavy metals and sixteen polycyclic aromatic hydrocarbons PAHs are analyzed. The results show t... Urban highway runoff samples from seventeen rainfall events were collected in Shanghai in 2011. The concentrations of ten heavy metals and sixteen polycyclic aromatic hydrocarbons PAHs are analyzed. The results show that the heavy metal concentrations range within 0.50 to 51.80 As 0 to 20.80 Se 13.67 to 445.80 Zn 0 to 44.20 Pb 0 to 15.80 Ni 39.58 to 264.20 Fe 0 to 253.00 Mn 0 to 8.20 Cr 0 to 124.20 Cu and 159.83 to 536.40 μg/L Al . Se Pb Mn and Al concentrations in most samples exceed their corresponding criterion continuous concentrations CCCs while Zn and Cu concentrations exceed their criterion maximum concentrations CMCs .The concentrations ofΣPAHs range within 37.25 to 114.57 ng/L and concentrations of PAHs are all below their corresponding CCCs.Cu Zn and ΣPAHs show the first flush phenomenon. Analysis results of the modified Nemerow index method NIM indicate that runoff from eight rainfall events may have very strong biological toxicity effects four have strong effects three have moderate effects and only two have insignificant effects.Therefore it is concluded that urban highway runoff is a significant pollution source to aquatic ecosystems and needs immediate purification. 展开更多
关键词 highway runoff heavy metal PAHS Nemerowindex method TOXICITY
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部