A fluid-structure interaction approach is proposed in this paper based onNon-Ordinary State-Based Peridynamics(NOSB-PD)and Updated Lagrangian Particle Hydrodynamics(ULPH)to simulate the fluid-structure interaction pro...A fluid-structure interaction approach is proposed in this paper based onNon-Ordinary State-Based Peridynamics(NOSB-PD)and Updated Lagrangian Particle Hydrodynamics(ULPH)to simulate the fluid-structure interaction problem with large geometric deformation and material failure and solve the fluid-structure interaction problem of Newtonian fluid.In the coupled framework,the NOSB-PD theory describes the deformation and fracture of the solid material structure.ULPH is applied to describe the flow of Newtonian fluids due to its advantages in computational accuracy.The framework utilizes the advantages of NOSB-PD theory for solving discontinuous problems and ULPH theory for solving fluid problems,with good computational stability and robustness.A fluidstructure coupling algorithm using pressure as the transmission medium is established to deal with the fluidstructure interface.The dynamic model of solid structure and the PD-ULPH fluid-structure interaction model involving large deformation are verified by numerical simulations.The results agree with the analytical solution,the available experimental data,and other numerical results.Thus,the accuracy and effectiveness of the proposed method in solving the fluid-structure interaction problem are demonstrated.The fluid-structure interactionmodel based on ULPH and NOSB-PD established in this paper provides a new idea for the numerical solution of fluidstructure interaction and a promising approach for engineering design and experimental prediction.展开更多
Natural convection is a heat transfer mechanism driven by temperature or density differences,leading to fluid motion without external influence.It occurs in various natural and engineering phenomena,influencing heat t...Natural convection is a heat transfer mechanism driven by temperature or density differences,leading to fluid motion without external influence.It occurs in various natural and engineering phenomena,influencing heat transfer,climate,and fluid mixing in industrial processes.This work aims to use the Updated Lagrangian Particle Hydrodynamics(ULPH)theory to address natural convection problems.The Navier-Stokes equation is discretized using second-order nonlocal differential operators,allowing a direct solution of the Laplace operator for temperature in the energy equation.Various numerical simulations,including cases such as natural convection in square cavities and two concentric cylinders,were conducted to validate the reliability of the model.The results demonstrate that the proposed model exhibits excellent accuracy and performance,providing a promising and effective numerical approach for natural convection problems.展开更多
The location of model errors in a stiffness matrix by using test data has been investigated by the others.The present paper deals with the problem of updating stiffness elements in the erroneous areas. Firstly,a model...The location of model errors in a stiffness matrix by using test data has been investigated by the others.The present paper deals with the problem of updating stiffness elements in the erroneous areas. Firstly,a model that bears relation to erroneous elements only is derived.This model is termed local errors model,which reduces orders and computational loads compared with global stiffness matrix. Secondly,an inverse eigenvalue method is used to update model errors. The results of a numerical experiment demonstrate that the method is quite effective.展开更多
The optimal matrix method and optimal elemental method used to update finite element models may not provide accurate results.This situation occurs when the test modal model is incomplete,as is often the case in practi...The optimal matrix method and optimal elemental method used to update finite element models may not provide accurate results.This situation occurs when the test modal model is incomplete,as is often the case in practice.An improved optimal elemental method is presented that defines a new objective function,and as a byproduct,circumvents the need for mass normalized modal shapes,which are also not readily available in practice.To solve the group of nonlinear equations created by the improved optimal method,the Lagrange multiplier method and Matlab function fmincon are employed.To deal with actual complex structures, the float-encoding genetic algorithm(FGA)is introduced to enhance the capability of the improved method.Two examples,a 7- degree of freedom(DOF)mass-spring system and a 53-DOF planar frame,respectively,are updated using the improved method. The example results demonstrate the advantages of the improved method over existing optimal methods,and show that the genetic algorithm is an effective way to update the models used for actual complex structures.展开更多
A real-time channel flood forecast model was developed to simulate channel flow in plain rivers based on the dynamic wave theory. Taking into consideration channel shape differences along the channel, a roughness upda...A real-time channel flood forecast model was developed to simulate channel flow in plain rivers based on the dynamic wave theory. Taking into consideration channel shape differences along the channel, a roughness updating technique was developed using the Kalman filter method to update Manning's roughness coefficient at each time step of the calculation processes. Channel shapes were simplified as rectangles, triangles, and parabolas, and the relationships between hydraulic radius and water depth were developed for plain rivers. Based on the relationship between the Froude number and the inertia terms of the momentum equation in the Saint-Venant equations, the relationship between Manning's roughness coefficient and water depth was obtained. Using the channel of the Huaihe River from Wangjiaba to Lutaizi stations as a case, to test the performance and rationality of the present flood routing model, the original hydraulic model was compared with the developed model. Results show that the stage hydrographs calculated by the developed flood routing model with the updated Manning's roughness coefficient have a good agreement with the observed stage hydrographs. This model performs better than the original hydraulic model.展开更多
The problem of correcting simultaneously mass and stiffness matrices of finite element model of undamped structural systems using vibration tests is considered in this paper.The desired matrix properties,including sat...The problem of correcting simultaneously mass and stiffness matrices of finite element model of undamped structural systems using vibration tests is considered in this paper.The desired matrix properties,including satisfaction of the characteristic equation,symmetry,positive semidefiniteness and sparsity,are imposed as side constraints to form the optimal matrix pencil approximation problem.Using partial Lagrangian multipliers,we transform the nonlinearly constrained optimization problem into an equivalent matrix linear variational inequality,develop a proximal point-like method for solving the matrix linear variational inequality,and analyze its global convergence.Numerical results are included to illustrate the performance and application of the proposed method.展开更多
A novel memory efficient path metric update is proposed for Maximum A Posteriori(MAP) decoder of turbo codes to reduce the memory requirement of state metric information calcu-lation. For MAP decoder,the same memory c...A novel memory efficient path metric update is proposed for Maximum A Posteriori(MAP) decoder of turbo codes to reduce the memory requirement of state metric information calcu-lation. For MAP decoder,the same memory can be shared by the forward and backward metrics with this metric update scheme. The forward and backward metrics update can be performed at the same time. And all of the extrinsic information can be calculated at the end of metric update. Therefore,the latency and area in the implementation will be reduced with the proposed metric update method.展开更多
In this paper, we prove the local and Supcrlinear convergence theorem of the column-updating method for n>2. This is an oped problem for the convergene theory of the column-updating method given by Martinez in the ...In this paper, we prove the local and Supcrlinear convergence theorem of the column-updating method for n>2. This is an oped problem for the convergene theory of the column-updating method given by Martinez in the Intcrnational Conference of the NATO-ASI (Italy, 1994).展开更多
To overcome the default of single search tendency, the ants in the colony are divided into several sub-groups. The ants in different subgroups have different trail information and expectation coefficients. The simulat...To overcome the default of single search tendency, the ants in the colony are divided into several sub-groups. The ants in different subgroups have different trail information and expectation coefficients. The simulated annealing method is introduced to the algorithm. Through setting the temperature changing with the iterations, after each turn of tours, the solution set obtained by the ants is taken as the candidate set. The update set is obtained by adding the solutions in the candidate set to the previous update set with the probability determined by the temperature. The solutions in the candidate set are used to update the trail information. In each turn of updating, the current best solution is also used to enhance the trail information on the current best route. The trail information is reset when the algorithm is in stagnation state. The computer experiments demonstrate that the proposed algorithm has higher stability and convergence speed.展开更多
The imaging speed is a bottleneck for magnetic resonance imaging( MRI) since it appears. To alleviate this difficulty,a novel graph regularized sparse coding method for highly undersampled MRI reconstruction( GSCMRI) ...The imaging speed is a bottleneck for magnetic resonance imaging( MRI) since it appears. To alleviate this difficulty,a novel graph regularized sparse coding method for highly undersampled MRI reconstruction( GSCMRI) was proposed. The graph regularized sparse coding showed the potential in maintaining the geometrical information of the data. In this study, it was incorporated with two-level Bregman iterative procedure that updated the data term in outer-level and learned dictionary in innerlevel. Moreover,the graph regularized sparse coding and simple dictionary updating stages derived by the inner minimization made the proposed algorithm converge in few iterations, meanwhile achieving superior reconstruction performance. Extensive experimental results have demonstrated GSCMRI can consistently recover both real-valued MR images and complex-valued MR data efficiently,and outperform the current state-of-the-art approaches in terms of higher PSNR and lower HFEN values.展开更多
This paper presents a new decomposition method for solving large-scale systems of nonlinear equations. The new method is of superlinear convergence speed and has rather less computa tional complexity than the Newton-t...This paper presents a new decomposition method for solving large-scale systems of nonlinear equations. The new method is of superlinear convergence speed and has rather less computa tional complexity than the Newton-type decomposition method as well as other known numerical methods, Primal numerical experiments show the superiority of the new method to the others.展开更多
A finite element model updating technique for complicated beam-type structures is presented in this study.Firstly, a complicated beam-type structure is reduced to a reduced super beam model with a much smaller degree ...A finite element model updating technique for complicated beam-type structures is presented in this study.Firstly, a complicated beam-type structure is reduced to a reduced super beam model with a much smaller degree of freedom by using the reduced super beam method, which is based on the classic plane cross-section assumption and displacement interpolation function of beam theory.Then based on the reduced super beam, the analysis of eigensolutions and eigensensitivities from the reduced eigenequation are processed for model updating, which will greatly reduce the computational effort when compared to the traditional model updating methods performed on the global model.Optimization techniques are adopted for updating the difference of modal dynamic properties, resulting in optimal values of the structural parameters.Finally, a complicated stiffened cylindrical shell model and a practical missile structure, served as the illustrative examples, are employed for model updating application, which demonstrate that the reduced super beam-based method is both effective and highly efficient.展开更多
In multiuser massive Multiple Input Multiple Output(MIMO)systems,a large amount of antennas are deployed at the Base Station(BS).In this case,the Minimum Mean Square Error(MMSE)detector with soft-output can achieve th...In multiuser massive Multiple Input Multiple Output(MIMO)systems,a large amount of antennas are deployed at the Base Station(BS).In this case,the Minimum Mean Square Error(MMSE)detector with soft-output can achieve the near-optimal performance at the cost of a large-scale matrix inversion operation.The optimization algorithms such as Gradient Descent(GD)method have received a lot of attention to realize the MMSE detection efficiently without a large scale matrix inversion operation.However,they converge slowly when the condition number of the MMSE filtering matrix(the coefficient matrix)increases,which can compromise the efficiency of their implementation.Moreover,their soft information computation also involves a large-scale matrix-matrix multiplication operation.In this paper,a low-complexity soft-output signal detector based on Adaptive Pre-conditioned Gradient Descent(APGD-SOD)method is proposed to realize the MMSE detection with soft-output for uplink multiuser massive MIMO systems.In the proposed detector,an Adaptive Pre-conditioner(AP)matrix obtained through the Quasi-Newton Symmetric Rank One(QN-SR1)update in each iteration is used to accelerate the convergence of the GD method.The QN-SR1 update supports the intuitive notion that for the quadractic problem one should strive to make the pre-conditioner matrix close to the inverse of the coefficient matrix,since then the condition number would be close to unity and the convergence would be rapid.By expanding the signal model of the massive MIMO system and exploiting the channel hardening property of massive MIMO systems,the computational complexity of the soft information is simplified.The proposed AP matrix is applied to the GD method as a showcase.However,it also can be used by Conjugate Gradient(CG)method due to its generality.It is demonstrated that the proposed detector is robust and its convergence rate is superlinear.Simulation results show that the proposed detector converges at most four iterations.Simulation results also show that the proposed approach achieves a better trade-off between the complexity and the performance than several existing detectors and achieves a near-optimal performance of the MMSE detector with soft-output at four iterations without a complicated large scale matrix inversion operation,which entails a big challenge for the efficient implementation.展开更多
基金open foundation of the Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanicsthe Open Foundation of Hubei Key Laboratory of Engineering Structural Analysis and Safety Assessment.
文摘A fluid-structure interaction approach is proposed in this paper based onNon-Ordinary State-Based Peridynamics(NOSB-PD)and Updated Lagrangian Particle Hydrodynamics(ULPH)to simulate the fluid-structure interaction problem with large geometric deformation and material failure and solve the fluid-structure interaction problem of Newtonian fluid.In the coupled framework,the NOSB-PD theory describes the deformation and fracture of the solid material structure.ULPH is applied to describe the flow of Newtonian fluids due to its advantages in computational accuracy.The framework utilizes the advantages of NOSB-PD theory for solving discontinuous problems and ULPH theory for solving fluid problems,with good computational stability and robustness.A fluidstructure coupling algorithm using pressure as the transmission medium is established to deal with the fluidstructure interface.The dynamic model of solid structure and the PD-ULPH fluid-structure interaction model involving large deformation are verified by numerical simulations.The results agree with the analytical solution,the available experimental data,and other numerical results.Thus,the accuracy and effectiveness of the proposed method in solving the fluid-structure interaction problem are demonstrated.The fluid-structure interactionmodel based on ULPH and NOSB-PD established in this paper provides a new idea for the numerical solution of fluidstructure interaction and a promising approach for engineering design and experimental prediction.
基金support from the National Natural Science Foundations of China(Nos.11972267 and 11802214)the Open Foundation of the Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics and the Open Foundation of Hubei Key Laboratory of Engineering Structural Analysis and Safety Assessment.
文摘Natural convection is a heat transfer mechanism driven by temperature or density differences,leading to fluid motion without external influence.It occurs in various natural and engineering phenomena,influencing heat transfer,climate,and fluid mixing in industrial processes.This work aims to use the Updated Lagrangian Particle Hydrodynamics(ULPH)theory to address natural convection problems.The Navier-Stokes equation is discretized using second-order nonlocal differential operators,allowing a direct solution of the Laplace operator for temperature in the energy equation.Various numerical simulations,including cases such as natural convection in square cavities and two concentric cylinders,were conducted to validate the reliability of the model.The results demonstrate that the proposed model exhibits excellent accuracy and performance,providing a promising and effective numerical approach for natural convection problems.
文摘The location of model errors in a stiffness matrix by using test data has been investigated by the others.The present paper deals with the problem of updating stiffness elements in the erroneous areas. Firstly,a model that bears relation to erroneous elements only is derived.This model is termed local errors model,which reduces orders and computational loads compared with global stiffness matrix. Secondly,an inverse eigenvalue method is used to update model errors. The results of a numerical experiment demonstrate that the method is quite effective.
基金The China Hi-Tech R&D Program(863 Program) Project Number 2001AA602023
文摘The optimal matrix method and optimal elemental method used to update finite element models may not provide accurate results.This situation occurs when the test modal model is incomplete,as is often the case in practice.An improved optimal elemental method is presented that defines a new objective function,and as a byproduct,circumvents the need for mass normalized modal shapes,which are also not readily available in practice.To solve the group of nonlinear equations created by the improved optimal method,the Lagrange multiplier method and Matlab function fmincon are employed.To deal with actual complex structures, the float-encoding genetic algorithm(FGA)is introduced to enhance the capability of the improved method.Two examples,a 7- degree of freedom(DOF)mass-spring system and a 53-DOF planar frame,respectively,are updated using the improved method. The example results demonstrate the advantages of the improved method over existing optimal methods,and show that the genetic algorithm is an effective way to update the models used for actual complex structures.
基金supported by the Special Fund for Public Welfare (Meteorology) of China (Grants No. GYHY201006037 and GYHY200906007)
文摘A real-time channel flood forecast model was developed to simulate channel flow in plain rivers based on the dynamic wave theory. Taking into consideration channel shape differences along the channel, a roughness updating technique was developed using the Kalman filter method to update Manning's roughness coefficient at each time step of the calculation processes. Channel shapes were simplified as rectangles, triangles, and parabolas, and the relationships between hydraulic radius and water depth were developed for plain rivers. Based on the relationship between the Froude number and the inertia terms of the momentum equation in the Saint-Venant equations, the relationship between Manning's roughness coefficient and water depth was obtained. Using the channel of the Huaihe River from Wangjiaba to Lutaizi stations as a case, to test the performance and rationality of the present flood routing model, the original hydraulic model was compared with the developed model. Results show that the stage hydrographs calculated by the developed flood routing model with the updated Manning's roughness coefficient have a good agreement with the observed stage hydrographs. This model performs better than the original hydraulic model.
基金The work was supported by the National Natural Science Foundation of China(No.11571171)。
文摘The problem of correcting simultaneously mass and stiffness matrices of finite element model of undamped structural systems using vibration tests is considered in this paper.The desired matrix properties,including satisfaction of the characteristic equation,symmetry,positive semidefiniteness and sparsity,are imposed as side constraints to form the optimal matrix pencil approximation problem.Using partial Lagrangian multipliers,we transform the nonlinearly constrained optimization problem into an equivalent matrix linear variational inequality,develop a proximal point-like method for solving the matrix linear variational inequality,and analyze its global convergence.Numerical results are included to illustrate the performance and application of the proposed method.
文摘A novel memory efficient path metric update is proposed for Maximum A Posteriori(MAP) decoder of turbo codes to reduce the memory requirement of state metric information calcu-lation. For MAP decoder,the same memory can be shared by the forward and backward metrics with this metric update scheme. The forward and backward metrics update can be performed at the same time. And all of the extrinsic information can be calculated at the end of metric update. Therefore,the latency and area in the implementation will be reduced with the proposed metric update method.
文摘In this paper, we prove the local and Supcrlinear convergence theorem of the column-updating method for n>2. This is an oped problem for the convergene theory of the column-updating method given by Martinez in the Intcrnational Conference of the NATO-ASI (Italy, 1994).
基金Project supported by the National Natural Science Foundation of China (Grant No.50608069)
文摘To overcome the default of single search tendency, the ants in the colony are divided into several sub-groups. The ants in different subgroups have different trail information and expectation coefficients. The simulated annealing method is introduced to the algorithm. Through setting the temperature changing with the iterations, after each turn of tours, the solution set obtained by the ants is taken as the candidate set. The update set is obtained by adding the solutions in the candidate set to the previous update set with the probability determined by the temperature. The solutions in the candidate set are used to update the trail information. In each turn of updating, the current best solution is also used to enhance the trail information on the current best route. The trail information is reset when the algorithm is in stagnation state. The computer experiments demonstrate that the proposed algorithm has higher stability and convergence speed.
基金National Natural Science Foundations of China(Nos.61362001,61102043,61262084)Technology Foundations of Department of Education of Jiangxi Province,China(Nos.GJJ12006,GJJ14196)Natural Science Foundations of Jiangxi Province,China(Nos.20132BAB211030,20122BAB211015)
文摘The imaging speed is a bottleneck for magnetic resonance imaging( MRI) since it appears. To alleviate this difficulty,a novel graph regularized sparse coding method for highly undersampled MRI reconstruction( GSCMRI) was proposed. The graph regularized sparse coding showed the potential in maintaining the geometrical information of the data. In this study, it was incorporated with two-level Bregman iterative procedure that updated the data term in outer-level and learned dictionary in innerlevel. Moreover,the graph regularized sparse coding and simple dictionary updating stages derived by the inner minimization made the proposed algorithm converge in few iterations, meanwhile achieving superior reconstruction performance. Extensive experimental results have demonstrated GSCMRI can consistently recover both real-valued MR images and complex-valued MR data efficiently,and outperform the current state-of-the-art approaches in terms of higher PSNR and lower HFEN values.
文摘This paper presents a new decomposition method for solving large-scale systems of nonlinear equations. The new method is of superlinear convergence speed and has rather less computa tional complexity than the Newton-type decomposition method as well as other known numerical methods, Primal numerical experiments show the superiority of the new method to the others.
基金Sponsored by the National Natural Science Foundation of China(Grant No.11402077)
文摘A finite element model updating technique for complicated beam-type structures is presented in this study.Firstly, a complicated beam-type structure is reduced to a reduced super beam model with a much smaller degree of freedom by using the reduced super beam method, which is based on the classic plane cross-section assumption and displacement interpolation function of beam theory.Then based on the reduced super beam, the analysis of eigensolutions and eigensensitivities from the reduced eigenequation are processed for model updating, which will greatly reduce the computational effort when compared to the traditional model updating methods performed on the global model.Optimization techniques are adopted for updating the difference of modal dynamic properties, resulting in optimal values of the structural parameters.Finally, a complicated stiffened cylindrical shell model and a practical missile structure, served as the illustrative examples, are employed for model updating application, which demonstrate that the reduced super beam-based method is both effective and highly efficient.
基金supported by National Natural Science Foundation of China under Grant 61501072 and 61701062Chongqing Research Program of Basic Research and Frontier Technology under Grant cstc2019jcyj-msxmX0079Program for Changjiang Scholars and Innovative Research Team in University under Grant IRT16R72.
文摘In multiuser massive Multiple Input Multiple Output(MIMO)systems,a large amount of antennas are deployed at the Base Station(BS).In this case,the Minimum Mean Square Error(MMSE)detector with soft-output can achieve the near-optimal performance at the cost of a large-scale matrix inversion operation.The optimization algorithms such as Gradient Descent(GD)method have received a lot of attention to realize the MMSE detection efficiently without a large scale matrix inversion operation.However,they converge slowly when the condition number of the MMSE filtering matrix(the coefficient matrix)increases,which can compromise the efficiency of their implementation.Moreover,their soft information computation also involves a large-scale matrix-matrix multiplication operation.In this paper,a low-complexity soft-output signal detector based on Adaptive Pre-conditioned Gradient Descent(APGD-SOD)method is proposed to realize the MMSE detection with soft-output for uplink multiuser massive MIMO systems.In the proposed detector,an Adaptive Pre-conditioner(AP)matrix obtained through the Quasi-Newton Symmetric Rank One(QN-SR1)update in each iteration is used to accelerate the convergence of the GD method.The QN-SR1 update supports the intuitive notion that for the quadractic problem one should strive to make the pre-conditioner matrix close to the inverse of the coefficient matrix,since then the condition number would be close to unity and the convergence would be rapid.By expanding the signal model of the massive MIMO system and exploiting the channel hardening property of massive MIMO systems,the computational complexity of the soft information is simplified.The proposed AP matrix is applied to the GD method as a showcase.However,it also can be used by Conjugate Gradient(CG)method due to its generality.It is demonstrated that the proposed detector is robust and its convergence rate is superlinear.Simulation results show that the proposed detector converges at most four iterations.Simulation results also show that the proposed approach achieves a better trade-off between the complexity and the performance than several existing detectors and achieves a near-optimal performance of the MMSE detector with soft-output at four iterations without a complicated large scale matrix inversion operation,which entails a big challenge for the efficient implementation.
基金supported by the Foundation for Innovative Research Groups of National Natural Science Foundation of China(No.51321065)the Foundation for Key Program of Natural Science Foundation of High Arch Dam(No.51339003)the National Basic Research Program of China(‘‘973’’Program,No.2013CB035904)