The advent of Industry 4.0 has compelled businesses to adopt digital approaches that combine software toenhance production efficiency. In this rapidly evolving market, software development is an ongoing process thatmu...The advent of Industry 4.0 has compelled businesses to adopt digital approaches that combine software toenhance production efficiency. In this rapidly evolving market, software development is an ongoing process thatmust be tailored to meet the dynamic needs of enterprises. However, internal research and development can beprohibitively expensive, driving many enterprises to outsource software development and upgrades to externalservice providers. This paper presents a software upgrade outsourcing model for enterprises and service providersthat accounts for the impact of market fluctuations on software adaptability. To mitigate the risk of adverseselection due to asymmetric information about the service provider’s cost and asymmetric information aboutthe enterprise’s revenues, we propose pay-per-time and revenue-sharing contracts in two distinct informationasymmetry scenarios. These two contracts specify the time and transfer payments for software upgrades. Througha comparative analysis of the optimal solutions under the two contracts and centralized decision-making withfull-information, we examine the characteristics of the solutions under two information asymmetry scenarios andanalyze the incentive effects of the two contracts on the various stakeholders. Overall, our study offers valuableinsights for firms seeking to optimize their outsourcing strategies and maximize their returns on investment insoftware upgrades.展开更多
A non-invasive software upgrade method for permanent implantable medical devices was developed to alleviate patients' suffering due to malfunctions because of software faults,which may cause serious adverse health co...A non-invasive software upgrade method for permanent implantable medical devices was developed to alleviate patients' suffering due to malfunctions because of software faults,which may cause serious adverse health consequences or require enhancements with new software.The programs distributed to the internal implantable pulse generator(IPG) from the external programmer have been developed so that the upgrade service program in the IPG is simplified with most complex functions executed by the external programmer.A bidirectional protocol including frame definition and transmission mode was designed to insure secure upgrades.A neuro-stimulator was used to verify the upgrade solution with no additional elements,to maintain the hardware reliability.This study emphasizes how to insure a secure and stable upgrade process and reduce power consumption for special wireless and life safety-critical applications.Tests on rhesus monkeys to evaluate the feasibility of the approach for an IPG used for brain stimulation evaluation show that the software upgrade can be implemented stably with good tolerance to the wireless data transmissions.展开更多
文摘The advent of Industry 4.0 has compelled businesses to adopt digital approaches that combine software toenhance production efficiency. In this rapidly evolving market, software development is an ongoing process thatmust be tailored to meet the dynamic needs of enterprises. However, internal research and development can beprohibitively expensive, driving many enterprises to outsource software development and upgrades to externalservice providers. This paper presents a software upgrade outsourcing model for enterprises and service providersthat accounts for the impact of market fluctuations on software adaptability. To mitigate the risk of adverseselection due to asymmetric information about the service provider’s cost and asymmetric information aboutthe enterprise’s revenues, we propose pay-per-time and revenue-sharing contracts in two distinct informationasymmetry scenarios. These two contracts specify the time and transfer payments for software upgrades. Througha comparative analysis of the optimal solutions under the two contracts and centralized decision-making withfull-information, we examine the characteristics of the solutions under two information asymmetry scenarios andanalyze the incentive effects of the two contracts on the various stakeholders. Overall, our study offers valuableinsights for firms seeking to optimize their outsourcing strategies and maximize their returns on investment insoftware upgrades.
基金Supported in part by the National Key Technology Research andDevelopment Program (No 2009BAI79B03)in part by the National Natural Science Foundation of China (No 60906050/F040604)the Opening Foundation of the State Key Laboratory of Space Medicine Fundamentals and Application (Chinese Astronaut Research and Training Center) (No SMFA09K08)
文摘A non-invasive software upgrade method for permanent implantable medical devices was developed to alleviate patients' suffering due to malfunctions because of software faults,which may cause serious adverse health consequences or require enhancements with new software.The programs distributed to the internal implantable pulse generator(IPG) from the external programmer have been developed so that the upgrade service program in the IPG is simplified with most complex functions executed by the external programmer.A bidirectional protocol including frame definition and transmission mode was designed to insure secure upgrades.A neuro-stimulator was used to verify the upgrade solution with no additional elements,to maintain the hardware reliability.This study emphasizes how to insure a secure and stable upgrade process and reduce power consumption for special wireless and life safety-critical applications.Tests on rhesus monkeys to evaluate the feasibility of the approach for an IPG used for brain stimulation evaluation show that the software upgrade can be implemented stably with good tolerance to the wireless data transmissions.