This study is focused on the simulation and optimization of packed-bed solar thermal energy storage by using sand as a storage material and hot-water is used as a heat transfer fluid and storage as well.The analysis h...This study is focused on the simulation and optimization of packed-bed solar thermal energy storage by using sand as a storage material and hot-water is used as a heat transfer fluid and storage as well.The analysis has been done by using the COMSOL multi-physics software and used to compute an optimization charging time of the storage.Parameters that control this optimization are storage height,storage diameter,heat transfer fluid flow rate,and sand bed particle size.The result of COMSOL multi-physics optimized thermal storage has been validated with Taguchi method.Accordingly,the optimized parameters of storage are:storage height of 1.4m,storage diameter of 0.4 m,flow rate of 0.02 kg/s,and sand particle size 12 mm.Among these parameters,the storage diameter result is the highest influenced optimized parameter of the thermal storage fromthe ANOVA analysis.For nominal packed bed thermal storage,the charging time needed to attain about 520 K temperature is more than 3500 s,while it needs only about 2000 s for the optimized storage which is very significant difference.Average charging energy efficiency of the optimized is greater than the nominal and previous concrete-based storage by 13.7%,and 13.1%,respectively in the charging time of 2700 s.展开更多
The conversion and storage of photothermal energy using phase change materials(PCMs)represent an optimal approach for harnessing clean and sustainable solar energy.Herein,we encapsulated polyethylene glycol(PEG)in mon...The conversion and storage of photothermal energy using phase change materials(PCMs)represent an optimal approach for harnessing clean and sustainable solar energy.Herein,we encapsulated polyethylene glycol(PEG)in montmorillonite aerogels(3D-Mt)through vacuum impregnation to prepare 3D-Mt/PEG composite PCMs.When used as a support matrix,3D-Mt can effectively prevent PEG leakage and act as a flame-retardant barrier to reduce the flammability of PEG.Simultaneously,3D-Mt/PEG demonstrates outstanding shape retention,increased thermal energy storage density,and commendable thermal and chemical stability.The phase transition enthalpy of 3D-Mt/PEG can reach 167.53 J/g and remains stable even after 50 heating-cooling cycles.Furthermore,the vertical sheet-like structure of 3D-Mt establishes directional heat transport channels,facilitating efficient phonon transfer.This configuration results in highly anisotropic thermal conductivities that ensure swift thermal responses and efficient heat conduction.This study addresses the shortcomings of PCMs,including the issues of leakage and inadequate flame retardancy.It achieves the development and design of 3D-Mt/PEG with ultrahigh strength,superior flame retardancy,and directional heat transfer.Therefore,this work offers a design strategy for the preparation of high-performance composite PCMs.The 3D-Mt/PEG with vertically aligned and well-ordered array structure developed in this research shows great potential for thermal management and photothermal conversion applications.展开更多
Green conditions have been developed for the synthesis of substituted 2-aminothiophenes employing multicomponent reactions of a ketone with active methylene nitrile and elemental sulphur induced by free solar thermal ...Green conditions have been developed for the synthesis of substituted 2-aminothiophenes employing multicomponent reactions of a ketone with active methylene nitrile and elemental sulphur induced by free solar thermal energy.展开更多
A simple, convenient and efficient method for the synthesis of 1,2,4,5-tetrasubstituted imidazole derivatives using benzoin, an aromatic aldehyde, an aromatic amine in the presence of ammonium acetate catalyzed by hig...A simple, convenient and efficient method for the synthesis of 1,2,4,5-tetrasubstituted imidazole derivatives using benzoin, an aromatic aldehyde, an aromatic amine in the presence of ammonium acetate catalyzed by high surface area SiO2 and induced by free solar thermal energy was reported. C 2009 Kamal User Sadek. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.展开更多
The behaviour of cyanothioacetamide 1 and the acetonitrile derivatives 6 and 10, respectively, towards the nitrones 2a-i induced by free solar thermal energy is reported. Structures and reaction mechanisms are also di...The behaviour of cyanothioacetamide 1 and the acetonitrile derivatives 6 and 10, respectively, towards the nitrones 2a-i induced by free solar thermal energy is reported. Structures and reaction mechanisms are also discussed.展开更多
In recent years, introduction of alternative energy sources such as solar energy is expected. Solar heat energy utilization systems are rapidly gaining acceptance as one of the best solutions to be an alternative ener...In recent years, introduction of alternative energy sources such as solar energy is expected. Solar heat energy utilization systems are rapidly gaining acceptance as one of the best solutions to be an alternative energy source. However, thermal energy collection is influenced by solar radiation and weather conditions. In order to control a solar heat energy utilization system as accurate as possible, it requires method of solar radiation estimation. This paper proposes the forecast technique of a thermal energy collection of solar heat energy utilization system based on solar radiation forecasting at one-day-ahead 24-hour thermal energy collection by using three different NN models. The proposed technique with application of NN is trained by weather data based on tree-based model, and tested according to forecast day. Since tree-based-model classifies a meteorological data exactly, NN will train a solar radiation with smoothly. The validity of the proposed technique is confirmed by computer simulations by use of actual meteorological data.展开更多
This article aims to present the feasibility of storing thermal energy in buildings for solar water heating while maintaining the comfort environment for residential buildings.Our contribution is the creation of insul...This article aims to present the feasibility of storing thermal energy in buildings for solar water heating while maintaining the comfort environment for residential buildings.Our contribution is the creation of insulating composite panels made of bio-based phase change materials(bio-PCM is all from coconut oil),cement and renewable materials(treated wood fiber and organic clay).The inclusion of wood fibers improved the thermal properties;a simple 2%increase of wood fiber decreased the heat conductivity by approximately 23.42%.The issues of bio-PCM leakage in the cement mortar and a roughly 56.5%reduction in thermal conductivity with bio-PCM stability in composite panels can be resolved by treating wood fibers with an adjuvant by impregnating them in bio-PCM in the presence of the treated clay generated.Clay and wood fiber were treated with adjuvants that are both biological and environmentally acceptable,as confirmed by FTIR spectroscopy.The heat transfer bench(DIDATEK)showed a decrease in thermal conductivity.By using differential scanning calorimetric(DSC)analysis,the investigation of thermal stability and enthalpy during two heating cycles of pure bio-PCM and composite bio-PCM was validated.The novel renewable material was used to create composite panels for the trial prototype,which took the shape of a component attached to the solar heating system,33.57%less heat was lost,according to the heat transfer research.The outcomes demonstrated the possibility of replacing traditional electric water heating in residential buildings with solar water heating systems.展开更多
The vast majority of high-performance perovskite solar cells(PSCs) are based on a formamidinium lead iodide(FAPbI_(3))-dominant composition. Nevertheless, the FA-based perovskite films suffer from undesirable phase tr...The vast majority of high-performance perovskite solar cells(PSCs) are based on a formamidinium lead iodide(FAPbI_(3))-dominant composition. Nevertheless, the FA-based perovskite films suffer from undesirable phase transition and defects-induced non-ideal interfacial recombination, which significantly induces energy loss and hinders the improvement of device performance. Herein, we employed 4-fluorophenylmethylammonium iodide(F-PMAI) to modulate surface structure and energy level alignment of the FA-based perovskite films. The superior optoelectronic films were obtained with reduced trap density, pure α-phase FAPbI_(3) and favorable energy band bending. The lifetime of photogenerated charge carriers increased from 489.3 ns to 1010.6 ns, and a more “p-type” perovskite film was obtained by the post-treatment with F-PMAI. Following this strategy, we demonstrated an improved power conversion efficiency of 22.59% for the FA-based PSCs with an open-circuit voltage loss of 399 m V.展开更多
Government of India has come out with an ambitious target of 100 GW of using solar energy alone by the year 2022. To reach this target, innovative ideas are required to use the solar energy more effectively. For solar...Government of India has come out with an ambitious target of 100 GW of using solar energy alone by the year 2022. To reach this target, innovative ideas are required to use the solar energy more effectively. For solar electricity generation, mainly two types of technologies are presently in use, namely, solar PV and solar thermal. Being a tropical country, India has large solar PV and solar thermal energy. More research is required on economic aspects to make the solar thermal competitive to solar PV. Towards this direction, in our present study we have simulated a solar thermal power plant using Parabolic Trough Collector (PTC) technology and normalized with 1 MW solar thermal power plant at Gurgaon near New Delhi. Through simulation, we have extended our study and computed the electricity generation possible at different locations of India. For this purpose with 1? × 1?spacing, computations have been carried out at 296 locations. The work is further extended for more detailed study at two representative states, namely, Gujarat and Tamil Nadu. In these two states, closer data points with 0.25? × 0.25? spacing have been considered at 273 locations for Gujarat and 197 locations for Tamil Nadu. Our results indicate a large potential of electricity generation using solar thermal energy in southern states of India, namely, Tamil Nadu, Karnataka, Kerala, southern and western part of Andhra Pradesh and eastern part of Maharashtra. Good potential has also been observed in eastern parts of Gujarat and parts of Madhya Pradesh and eastern part of Rajasthan. The annual potential ranges from 1800 MWh to as much as 2600 MWh. Major parts of northern states, for example Uttar Pradesh, Bihar, West Bengal, Punjab, Jammu and Kashmir have medium range potential. Here, the annual potential ranges from 1000 to 1500 MWh. Poor range of potential is observed towards eastern parts of India and north eastern states. Here, the electricity generation potential ranges from 600 to 1200 MWh. Our results are useful to solar thermal developer and decision managers.展开更多
A new small concentrating solar power plant which is suitable for urban area is presented, and a theoretical framework for the energy and exergy analysis in the overall power plant is also constructed. The framework c...A new small concentrating solar power plant which is suitable for urban area is presented, and a theoretical framework for the energy and exergy analysis in the overall power plant is also constructed. The framework can be used to evaluate the energy and exergy losses in each component. Furthermore, the energy and exergy efficiencies have also been computed and compared for the individual components as well as for the overall plant.展开更多
In this work,a life cycle analysis is accomplished for flat plate solar collectors.The purpose of this investigation is to predict the energy consumption during the manufacturing processes that results in carbon dioxi...In this work,a life cycle analysis is accomplished for flat plate solar collectors.The purpose of this investigation is to predict the energy consumption during the manufacturing processes that results in carbon dioxide emissions.Energy consumption and system efficiency enhancement will be studied and predicted.CES EduPack software is used to perform the analysis of the currently commercial system,and the suggested changes are implemented to increase the efficiency and make the comparison.Even though cost analysis is done,the priority of selection is given to the most energy conserving and environmentally friendly alternative.However,if the compared alternatives result in the same energy consumption and CO_(2)emissions,the cost analysis would be a better approach.It can be stated that flat plate solar collectors are sustainable and renewable energy systems that do not produce CO_(2)emissions during their active usage,but the manufacturing processes they undergo during the design contribute to the greenhouse gasses emission.展开更多
Concentrating solar power(CSP) has garnered considerable global attention as a reliable means of generating bulk electricity, effectively addressing the intermittent nature of solar resources.The integration of molten...Concentrating solar power(CSP) has garnered considerable global attention as a reliable means of generating bulk electricity, effectively addressing the intermittent nature of solar resources.The integration of molten salt technology for thermal energy storage(TES) has further contributed to the growth of CSP plants;however, the corrosive nature of molten salts poses challenges to the durability of container materials, necessitating innovative corrosion mitigation strategies.This review summarizes scientific advancements in high-temperature anticorrosion coatings for molten nitrate salts, highlighting the key challenges and future trends.It also explores various coating types, including metallic, ceramic, and carbon-based coatings, and compares different coating deposition methods.This review emphasizes the need for durable coatings that meet long-term performance requirements and regulatory limitations, with an emphasis on carbon-based coatings and emerging nanomaterials.A combination of multiple coatings is required to achieve desirable anticorrosion properties while addressing material compatibility and cost considerations.The overall goal is to advance the manufacturing, assembly, and performance of CSP systems for increased efficiency, reliability, and durability in various applications.展开更多
The main aim of this paper is to present an easy to use methodology for assessing the potential amount of electricity or thermal energy production in urban areas located in natural protected sites. The methodology is ...The main aim of this paper is to present an easy to use methodology for assessing the potential amount of electricity or thermal energy production in urban areas located in natural protected sites. The methodology is based on two different steps: a territorial analysis for the evaluation of solar radiation and usable surfaces for photovoltaic or solar thermal plant, and a plant analysis for highlighting those photovoltaic and solar thermal technologies which installation will not generate significant impacts in areas characterized by high environmental and landscaping value. The methodology was successfully applied in two case studies inside two different Italian natural protected areas. The obtained results were provided to local administrations and communities as a useful tool for sustainable energy planning.展开更多
The day/night (diurnal) changes in temperature and solar radiation pose challenges for maintaining human thermal comfort in buildings. Passive and energy-conserving buildings seek to manage the available thermal ene...The day/night (diurnal) changes in temperature and solar radiation pose challenges for maintaining human thermal comfort in buildings. Passive and energy-conserving buildings seek to manage the available thermal energy by lowering peaks and dampening the fluctuations in order to maintain conditions for human comfort. Appropriate use of thermal mass moderates the internal temperatures by averaging diurnal extremes. Thermal mass is one of the powerful tools which architects and designers can use to control temperature. It can be used to optimize the performance of energy-conserving buildings that rely primarily on mechanical heating and cooling strategies. Massive building envelopes-such as masonry, concrete, earth, and insulating concrete forms (ICFs) can be utilized as one of the simplest ways of reducing building heating and cooling loads. This article analyses the role and effectiveness of thermal mass as a strategy for providing indoor thermal comfort for passive solar and energy conserving buildings.展开更多
The use of cool materials on the building envelope is one of the most cost-effective ways to increase indoor thermal comfort conditions in hot climates and decrease the cooling energy needs.Despite the benefit of redu...The use of cool materials on the building envelope is one of the most cost-effective ways to increase indoor thermal comfort conditions in hot climates and decrease the cooling energy needs.Despite the benefit of reducing cooling loads,researches have demonstrated that aging of roof coatings changes the initial solar reflectance(SR),which influences the long term building thermal and energy performance.Thus,this work presents preliminary natural weathering tests performed on samples of nine white coatings exposed to natural weathering for one year in the city of Sao Carlos,Brazil.Solar reflectances were measured with a spectrophotometer before and after exposure,every 3 months,for identifying the effect of aging along the time.The findings showed changes of 13%to 23%on SR after one year of natural weathering,with higher decrease on SR for rougher surfaces.The cleaning process restored from 90%to 100%of the original SR,which means maintenance can be an effective solution to restore the initial SR.Simulations indicated that roofs with higher solar reflectance increase indoor thermal comfort conditions and decrease the cooling energy need for buildings in hot climates,but the aging of white coatings increased the cooling energy needs along the time.展开更多
A system of energy storage for solar thermal air conditioning combined with ejector cooling system for residential is determined in this paper. The purpose of this study is to design the energy storage system for heat...A system of energy storage for solar thermal air conditioning combined with ejector cooling system for residential is determined in this paper. The purpose of this study is to design the energy storage system for heating the water in a storage tank to reach the required temperature for exchanging heat with the refrigerant of cooling system. The design from calculation of thermal energy storage system that proper with the solar flat plate collector area results are 70 m2, and the hot water temperature is over than 80 ℃. A cooling system is selected for refrigerant of R141b from the solar air conditioning system of 10.5 kW, and the energy source is solar thermal energy from the collector that there is an efficiency of 0.46 approximately. This storage system for the electric solar cooling system can be reduced the problem of the intermittent of energy source with the constant generating temperature to run the cooling system continuously.展开更多
Phenyl-C_(61)-butyric acid methyl ester(PCBM) serves as a common electron transport layer(ETL) in inverted p-i-n structure perovskite solar cells(IPSCs),yet energy barriers and insufficient passivation at the PCBM-per...Phenyl-C_(61)-butyric acid methyl ester(PCBM) serves as a common electron transport layer(ETL) in inverted p-i-n structure perovskite solar cells(IPSCs),yet energy barriers and insufficient passivation at the PCBM-perovskite interface hinder device effectiveness and durability.In this study,we present a series of novel Fullerene Phenylacid Ester Derivatives(FPEDs:FPP,FTPP,FDPP) incorporated into PCBM.Our investigations illustrate that FPEDs effectively act to passivate the perovskite surface by forming robust interactions with uncoordinated Pb^(2+) ions via the phosphine oxide groups present in their molecular structures,thereby enhancing the stability of the devices.Moreover,these additives elevate the energy level of the lowest unoccupied molecular orbital(LUMO) of ETL,diminish the electron injection barrier,and enhance the efficiency of interlayer electron transport.Incorporating FPEDs enhances ETL coverage on the perovskite layer,reducing leakage current significantly.Notably,Devices with PCBM/FTPP achieved a peak PCE of 23.62% and showed superior stability,maintaining 96,8% of the initial PCE after 500 h,while control devices retained merely 80.7% over the same period.展开更多
North African countries generally have strategic demands for energy transformation and sustainable development.Renewable energy development is important to achieve this goal.Considering three typical types of renewabl...North African countries generally have strategic demands for energy transformation and sustainable development.Renewable energy development is important to achieve this goal.Considering three typical types of renewable energies—wind,photovoltaic(PV),and concentrating solar power(CSP)—an optimal planning model is established to minimize construction costs and power curtailment losses.The levelized cost of electricity is used as an index for assessing economic feasibility.In this study,wind and PV,wind/PV/CSP,and transnational interconnection modes are designed for Morocco,Egypt,and Tunisia.The installed capacities of renewable energy power generation are planned through the time sequence production simulation method for each country.The results show that renewable energy combined with power generation,including the CSP mode,can improve reliability of the power supply and reduce the power curtailment rate.The transnational interconnection mode can help realize mutual benefits of renewable energy power,while the apportionment of electricity prices and trading mechanisms are very important and are related to economic feasibility;thus,this mode is important for the future development of renewable energy in North Africa.展开更多
Accurate basic data are necessary to support performance-based design for achieving carbon peak and carbon neutral targets in the building sector.Meteorological parameters are the prerequisites of building thermal eng...Accurate basic data are necessary to support performance-based design for achieving carbon peak and carbon neutral targets in the building sector.Meteorological parameters are the prerequisites of building thermal engineering design,heating ventilation and air conditioning design,and energy consumption simulations.Focusing on the key issues such as low spatial coverage and the lack of daily or higher time resolution data,daily and hourly models of the surface meteorological data and solar radiation were established and evaluated.Surface meteorological data and solar radiation data were generated for 1019 cities and towns in China from 1988 to 2017.The data were carefully compared,and the accuracy was proved to be high.All the meteorological parameters can be assessed in the building sector via a sharing platform.Then,country-level meteorological parameters were developed for energy-efficient building assessment in China,based on actual meteorological data in the present study.This set of meteorological parameters may facilitate engineering applications as well as allowing the updating and expansion of relevant building energy efficiency standards.The study was supported by the National Science and Technology Major Project of China during the 13th Five-Year Plan Period,named Fundamental parameters on building energy efficiency in China,comprising of 15 top-ranking universities and institutions in China.展开更多
A district heating and hot water supply system is presented which synthetically utilizes geothermal energy,solar thermal energy and natural gas thermal energy.The multi-energy utilization system has been set at the ne...A district heating and hot water supply system is presented which synthetically utilizes geothermal energy,solar thermal energy and natural gas thermal energy.The multi-energy utilization system has been set at the new campus of Tianjin Polytechnic University(TPU),A couple of deep geothermal wells which are 2 300 m in depth were dug,Deep geothermal energy cascade utilization is achieved by two stages of plate heat exchangers(PHE) and two stages of water source heat pumps(WSHP).Shallow geothermal energy is used in assistant heating by two ground coupled heat pumps(GCHPs) with 580 vertical ground wells which are 120 m in depth.Solar thermal energy collected by vacuum tube arrays(VTAs) and geothermal energy are complementarily utilized to make domestic hot water.Superfluous solar energy can be stored in shallow soil for the GCHP utilization.The system can use fossil fuel thermal energy by two natural gas boilers(NGB) to assist in heating and making hot water.The heating energy efficiency was measured in the winter of 2010-2011.The coefficients of performance(COP) under different heating conditions are discussed.The performance of hot water production is tested in a local typical winter day and the solar thermal energy utilization factor is presented.The rusults show that the average system COP is 5.75 or 4.96 under different working conditions,and the typical solar energy utilization factor is 0.324.展开更多
文摘This study is focused on the simulation and optimization of packed-bed solar thermal energy storage by using sand as a storage material and hot-water is used as a heat transfer fluid and storage as well.The analysis has been done by using the COMSOL multi-physics software and used to compute an optimization charging time of the storage.Parameters that control this optimization are storage height,storage diameter,heat transfer fluid flow rate,and sand bed particle size.The result of COMSOL multi-physics optimized thermal storage has been validated with Taguchi method.Accordingly,the optimized parameters of storage are:storage height of 1.4m,storage diameter of 0.4 m,flow rate of 0.02 kg/s,and sand particle size 12 mm.Among these parameters,the storage diameter result is the highest influenced optimized parameter of the thermal storage fromthe ANOVA analysis.For nominal packed bed thermal storage,the charging time needed to attain about 520 K temperature is more than 3500 s,while it needs only about 2000 s for the optimized storage which is very significant difference.Average charging energy efficiency of the optimized is greater than the nominal and previous concrete-based storage by 13.7%,and 13.1%,respectively in the charging time of 2700 s.
基金supported by the National Natural Science Foundation of China(No.52104265)。
文摘The conversion and storage of photothermal energy using phase change materials(PCMs)represent an optimal approach for harnessing clean and sustainable solar energy.Herein,we encapsulated polyethylene glycol(PEG)in montmorillonite aerogels(3D-Mt)through vacuum impregnation to prepare 3D-Mt/PEG composite PCMs.When used as a support matrix,3D-Mt can effectively prevent PEG leakage and act as a flame-retardant barrier to reduce the flammability of PEG.Simultaneously,3D-Mt/PEG demonstrates outstanding shape retention,increased thermal energy storage density,and commendable thermal and chemical stability.The phase transition enthalpy of 3D-Mt/PEG can reach 167.53 J/g and remains stable even after 50 heating-cooling cycles.Furthermore,the vertical sheet-like structure of 3D-Mt establishes directional heat transport channels,facilitating efficient phonon transfer.This configuration results in highly anisotropic thermal conductivities that ensure swift thermal responses and efficient heat conduction.This study addresses the shortcomings of PCMs,including the issues of leakage and inadequate flame retardancy.It achieves the development and design of 3D-Mt/PEG with ultrahigh strength,superior flame retardancy,and directional heat transfer.Therefore,this work offers a design strategy for the preparation of high-performance composite PCMs.The 3D-Mt/PEG with vertically aligned and well-ordered array structure developed in this research shows great potential for thermal management and photothermal conversion applications.
文摘Green conditions have been developed for the synthesis of substituted 2-aminothiophenes employing multicomponent reactions of a ketone with active methylene nitrile and elemental sulphur induced by free solar thermal energy.
文摘A simple, convenient and efficient method for the synthesis of 1,2,4,5-tetrasubstituted imidazole derivatives using benzoin, an aromatic aldehyde, an aromatic amine in the presence of ammonium acetate catalyzed by high surface area SiO2 and induced by free solar thermal energy was reported. C 2009 Kamal User Sadek. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.
文摘The behaviour of cyanothioacetamide 1 and the acetonitrile derivatives 6 and 10, respectively, towards the nitrones 2a-i induced by free solar thermal energy is reported. Structures and reaction mechanisms are also discussed.
文摘In recent years, introduction of alternative energy sources such as solar energy is expected. Solar heat energy utilization systems are rapidly gaining acceptance as one of the best solutions to be an alternative energy source. However, thermal energy collection is influenced by solar radiation and weather conditions. In order to control a solar heat energy utilization system as accurate as possible, it requires method of solar radiation estimation. This paper proposes the forecast technique of a thermal energy collection of solar heat energy utilization system based on solar radiation forecasting at one-day-ahead 24-hour thermal energy collection by using three different NN models. The proposed technique with application of NN is trained by weather data based on tree-based model, and tested according to forecast day. Since tree-based-model classifies a meteorological data exactly, NN will train a solar radiation with smoothly. The validity of the proposed technique is confirmed by computer simulations by use of actual meteorological data.
文摘This article aims to present the feasibility of storing thermal energy in buildings for solar water heating while maintaining the comfort environment for residential buildings.Our contribution is the creation of insulating composite panels made of bio-based phase change materials(bio-PCM is all from coconut oil),cement and renewable materials(treated wood fiber and organic clay).The inclusion of wood fibers improved the thermal properties;a simple 2%increase of wood fiber decreased the heat conductivity by approximately 23.42%.The issues of bio-PCM leakage in the cement mortar and a roughly 56.5%reduction in thermal conductivity with bio-PCM stability in composite panels can be resolved by treating wood fibers with an adjuvant by impregnating them in bio-PCM in the presence of the treated clay generated.Clay and wood fiber were treated with adjuvants that are both biological and environmentally acceptable,as confirmed by FTIR spectroscopy.The heat transfer bench(DIDATEK)showed a decrease in thermal conductivity.By using differential scanning calorimetric(DSC)analysis,the investigation of thermal stability and enthalpy during two heating cycles of pure bio-PCM and composite bio-PCM was validated.The novel renewable material was used to create composite panels for the trial prototype,which took the shape of a component attached to the solar heating system,33.57%less heat was lost,according to the heat transfer research.The outcomes demonstrated the possibility of replacing traditional electric water heating in residential buildings with solar water heating systems.
基金funded by the National Natural Science Foundation of China(62004165)the China Postdoctoral Science Foundation(2020M670036)+2 种基金the Natural Science Foundation of Shaanxi Province,China(2020JQ195)the Joint Research Funds of Department of Science&Technology of Shaanxi Province and Northwestern Polytechnical University(2020GXLH-Z-007,2020GXLH-Z-025)the Fundamental Research Funds for the Central Universities。
文摘The vast majority of high-performance perovskite solar cells(PSCs) are based on a formamidinium lead iodide(FAPbI_(3))-dominant composition. Nevertheless, the FA-based perovskite films suffer from undesirable phase transition and defects-induced non-ideal interfacial recombination, which significantly induces energy loss and hinders the improvement of device performance. Herein, we employed 4-fluorophenylmethylammonium iodide(F-PMAI) to modulate surface structure and energy level alignment of the FA-based perovskite films. The superior optoelectronic films were obtained with reduced trap density, pure α-phase FAPbI_(3) and favorable energy band bending. The lifetime of photogenerated charge carriers increased from 489.3 ns to 1010.6 ns, and a more “p-type” perovskite film was obtained by the post-treatment with F-PMAI. Following this strategy, we demonstrated an improved power conversion efficiency of 22.59% for the FA-based PSCs with an open-circuit voltage loss of 399 m V.
文摘Government of India has come out with an ambitious target of 100 GW of using solar energy alone by the year 2022. To reach this target, innovative ideas are required to use the solar energy more effectively. For solar electricity generation, mainly two types of technologies are presently in use, namely, solar PV and solar thermal. Being a tropical country, India has large solar PV and solar thermal energy. More research is required on economic aspects to make the solar thermal competitive to solar PV. Towards this direction, in our present study we have simulated a solar thermal power plant using Parabolic Trough Collector (PTC) technology and normalized with 1 MW solar thermal power plant at Gurgaon near New Delhi. Through simulation, we have extended our study and computed the electricity generation possible at different locations of India. For this purpose with 1? × 1?spacing, computations have been carried out at 296 locations. The work is further extended for more detailed study at two representative states, namely, Gujarat and Tamil Nadu. In these two states, closer data points with 0.25? × 0.25? spacing have been considered at 273 locations for Gujarat and 197 locations for Tamil Nadu. Our results indicate a large potential of electricity generation using solar thermal energy in southern states of India, namely, Tamil Nadu, Karnataka, Kerala, southern and western part of Andhra Pradesh and eastern part of Maharashtra. Good potential has also been observed in eastern parts of Gujarat and parts of Madhya Pradesh and eastern part of Rajasthan. The annual potential ranges from 1800 MWh to as much as 2600 MWh. Major parts of northern states, for example Uttar Pradesh, Bihar, West Bengal, Punjab, Jammu and Kashmir have medium range potential. Here, the annual potential ranges from 1000 to 1500 MWh. Poor range of potential is observed towards eastern parts of India and north eastern states. Here, the electricity generation potential ranges from 600 to 1200 MWh. Our results are useful to solar thermal developer and decision managers.
文摘A new small concentrating solar power plant which is suitable for urban area is presented, and a theoretical framework for the energy and exergy analysis in the overall power plant is also constructed. The framework can be used to evaluate the energy and exergy losses in each component. Furthermore, the energy and exergy efficiencies have also been computed and compared for the individual components as well as for the overall plant.
文摘In this work,a life cycle analysis is accomplished for flat plate solar collectors.The purpose of this investigation is to predict the energy consumption during the manufacturing processes that results in carbon dioxide emissions.Energy consumption and system efficiency enhancement will be studied and predicted.CES EduPack software is used to perform the analysis of the currently commercial system,and the suggested changes are implemented to increase the efficiency and make the comparison.Even though cost analysis is done,the priority of selection is given to the most energy conserving and environmentally friendly alternative.However,if the compared alternatives result in the same energy consumption and CO_(2)emissions,the cost analysis would be a better approach.It can be stated that flat plate solar collectors are sustainable and renewable energy systems that do not produce CO_(2)emissions during their active usage,but the manufacturing processes they undergo during the design contribute to the greenhouse gasses emission.
文摘Concentrating solar power(CSP) has garnered considerable global attention as a reliable means of generating bulk electricity, effectively addressing the intermittent nature of solar resources.The integration of molten salt technology for thermal energy storage(TES) has further contributed to the growth of CSP plants;however, the corrosive nature of molten salts poses challenges to the durability of container materials, necessitating innovative corrosion mitigation strategies.This review summarizes scientific advancements in high-temperature anticorrosion coatings for molten nitrate salts, highlighting the key challenges and future trends.It also explores various coating types, including metallic, ceramic, and carbon-based coatings, and compares different coating deposition methods.This review emphasizes the need for durable coatings that meet long-term performance requirements and regulatory limitations, with an emphasis on carbon-based coatings and emerging nanomaterials.A combination of multiple coatings is required to achieve desirable anticorrosion properties while addressing material compatibility and cost considerations.The overall goal is to advance the manufacturing, assembly, and performance of CSP systems for increased efficiency, reliability, and durability in various applications.
文摘The main aim of this paper is to present an easy to use methodology for assessing the potential amount of electricity or thermal energy production in urban areas located in natural protected sites. The methodology is based on two different steps: a territorial analysis for the evaluation of solar radiation and usable surfaces for photovoltaic or solar thermal plant, and a plant analysis for highlighting those photovoltaic and solar thermal technologies which installation will not generate significant impacts in areas characterized by high environmental and landscaping value. The methodology was successfully applied in two case studies inside two different Italian natural protected areas. The obtained results were provided to local administrations and communities as a useful tool for sustainable energy planning.
文摘The day/night (diurnal) changes in temperature and solar radiation pose challenges for maintaining human thermal comfort in buildings. Passive and energy-conserving buildings seek to manage the available thermal energy by lowering peaks and dampening the fluctuations in order to maintain conditions for human comfort. Appropriate use of thermal mass moderates the internal temperatures by averaging diurnal extremes. Thermal mass is one of the powerful tools which architects and designers can use to control temperature. It can be used to optimize the performance of energy-conserving buildings that rely primarily on mechanical heating and cooling strategies. Massive building envelopes-such as masonry, concrete, earth, and insulating concrete forms (ICFs) can be utilized as one of the simplest ways of reducing building heating and cooling loads. This article analyses the role and effectiveness of thermal mass as a strategy for providing indoor thermal comfort for passive solar and energy conserving buildings.
基金This work was funded by The State of São Paulo Research Foundation(FAPESP,Nº08/58700-0)and the National Council for Scientific and Technological Development(CNPq,N°402720/2016-4).
文摘The use of cool materials on the building envelope is one of the most cost-effective ways to increase indoor thermal comfort conditions in hot climates and decrease the cooling energy needs.Despite the benefit of reducing cooling loads,researches have demonstrated that aging of roof coatings changes the initial solar reflectance(SR),which influences the long term building thermal and energy performance.Thus,this work presents preliminary natural weathering tests performed on samples of nine white coatings exposed to natural weathering for one year in the city of Sao Carlos,Brazil.Solar reflectances were measured with a spectrophotometer before and after exposure,every 3 months,for identifying the effect of aging along the time.The findings showed changes of 13%to 23%on SR after one year of natural weathering,with higher decrease on SR for rougher surfaces.The cleaning process restored from 90%to 100%of the original SR,which means maintenance can be an effective solution to restore the initial SR.Simulations indicated that roofs with higher solar reflectance increase indoor thermal comfort conditions and decrease the cooling energy need for buildings in hot climates,but the aging of white coatings increased the cooling energy needs along the time.
文摘A system of energy storage for solar thermal air conditioning combined with ejector cooling system for residential is determined in this paper. The purpose of this study is to design the energy storage system for heating the water in a storage tank to reach the required temperature for exchanging heat with the refrigerant of cooling system. The design from calculation of thermal energy storage system that proper with the solar flat plate collector area results are 70 m2, and the hot water temperature is over than 80 ℃. A cooling system is selected for refrigerant of R141b from the solar air conditioning system of 10.5 kW, and the energy source is solar thermal energy from the collector that there is an efficiency of 0.46 approximately. This storage system for the electric solar cooling system can be reduced the problem of the intermittent of energy source with the constant generating temperature to run the cooling system continuously.
基金Natural Science Foundation of China (51972278)Outstanding Youth Science and Technology Talents Program of Sichuan (19JCQN0085)Open Project of State Key Laboratory of Environment-friendly Energy Materials (Southwest University of Science and Technology, 21fksy19)。
文摘Phenyl-C_(61)-butyric acid methyl ester(PCBM) serves as a common electron transport layer(ETL) in inverted p-i-n structure perovskite solar cells(IPSCs),yet energy barriers and insufficient passivation at the PCBM-perovskite interface hinder device effectiveness and durability.In this study,we present a series of novel Fullerene Phenylacid Ester Derivatives(FPEDs:FPP,FTPP,FDPP) incorporated into PCBM.Our investigations illustrate that FPEDs effectively act to passivate the perovskite surface by forming robust interactions with uncoordinated Pb^(2+) ions via the phosphine oxide groups present in their molecular structures,thereby enhancing the stability of the devices.Moreover,these additives elevate the energy level of the lowest unoccupied molecular orbital(LUMO) of ETL,diminish the electron injection barrier,and enhance the efficiency of interlayer electron transport.Incorporating FPEDs enhances ETL coverage on the perovskite layer,reducing leakage current significantly.Notably,Devices with PCBM/FTPP achieved a peak PCE of 23.62% and showed superior stability,maintaining 96,8% of the initial PCE after 500 h,while control devices retained merely 80.7% over the same period.
基金Supported by the Science and Technology Foundation of SGCC(Large-scale development and utilization mode of solar energy in North Africa under the condition of transcontinental grid interconnection:NY71-18-004)the Science and Technology Foundation of GEI(Research on Large-scale Solar Energy Development in West-Asia and North-Africa:NYN11201805034)
文摘North African countries generally have strategic demands for energy transformation and sustainable development.Renewable energy development is important to achieve this goal.Considering three typical types of renewable energies—wind,photovoltaic(PV),and concentrating solar power(CSP)—an optimal planning model is established to minimize construction costs and power curtailment losses.The levelized cost of electricity is used as an index for assessing economic feasibility.In this study,wind and PV,wind/PV/CSP,and transnational interconnection modes are designed for Morocco,Egypt,and Tunisia.The installed capacities of renewable energy power generation are planned through the time sequence production simulation method for each country.The results show that renewable energy combined with power generation,including the CSP mode,can improve reliability of the power supply and reduce the power curtailment rate.The transnational interconnection mode can help realize mutual benefits of renewable energy power,while the apportionment of electricity prices and trading mechanisms are very important and are related to economic feasibility;thus,this mode is important for the future development of renewable energy in North Africa.
基金Project(2018YFC0704500)supported by the National Science and Technology Major Project of China during the 13th Five-Year Plan Period。
文摘Accurate basic data are necessary to support performance-based design for achieving carbon peak and carbon neutral targets in the building sector.Meteorological parameters are the prerequisites of building thermal engineering design,heating ventilation and air conditioning design,and energy consumption simulations.Focusing on the key issues such as low spatial coverage and the lack of daily or higher time resolution data,daily and hourly models of the surface meteorological data and solar radiation were established and evaluated.Surface meteorological data and solar radiation data were generated for 1019 cities and towns in China from 1988 to 2017.The data were carefully compared,and the accuracy was proved to be high.All the meteorological parameters can be assessed in the building sector via a sharing platform.Then,country-level meteorological parameters were developed for energy-efficient building assessment in China,based on actual meteorological data in the present study.This set of meteorological parameters may facilitate engineering applications as well as allowing the updating and expansion of relevant building energy efficiency standards.The study was supported by the National Science and Technology Major Project of China during the 13th Five-Year Plan Period,named Fundamental parameters on building energy efficiency in China,comprising of 15 top-ranking universities and institutions in China.
基金Project(2010DFA72740-06) supported by International Science & Technology Cooperation Program of China
文摘A district heating and hot water supply system is presented which synthetically utilizes geothermal energy,solar thermal energy and natural gas thermal energy.The multi-energy utilization system has been set at the new campus of Tianjin Polytechnic University(TPU),A couple of deep geothermal wells which are 2 300 m in depth were dug,Deep geothermal energy cascade utilization is achieved by two stages of plate heat exchangers(PHE) and two stages of water source heat pumps(WSHP).Shallow geothermal energy is used in assistant heating by two ground coupled heat pumps(GCHPs) with 580 vertical ground wells which are 120 m in depth.Solar thermal energy collected by vacuum tube arrays(VTAs) and geothermal energy are complementarily utilized to make domestic hot water.Superfluous solar energy can be stored in shallow soil for the GCHP utilization.The system can use fossil fuel thermal energy by two natural gas boilers(NGB) to assist in heating and making hot water.The heating energy efficiency was measured in the winter of 2010-2011.The coefficients of performance(COP) under different heating conditions are discussed.The performance of hot water production is tested in a local typical winter day and the solar thermal energy utilization factor is presented.The rusults show that the average system COP is 5.75 or 4.96 under different working conditions,and the typical solar energy utilization factor is 0.324.