The Tibetan Plateau has been known for its highest elevation and thickest crust on earth,and become a key region for comprehending the rheology and tectonic evolution of continental plates and associated dynamic proce...The Tibetan Plateau has been known for its highest elevation and thickest crust on earth,and become a key region for comprehending the rheology and tectonic evolution of continental plates and associated dynamic processes.Over the past years,numerous geophysical studies have been conducted to explore the deep structure of the Tibetan Plateau,resulting in significant advancements in understanding the formation and growth of the Plateau.This paper aims to provide a comprehensive summary and discussion of the geophysical observations and underlying mechanisms of the plateau uplift.First,major relevant tectonic models are reviewed,and the corresponding features of crustal structures and related deformation are presented.Then,recent observations,including the identification of a high-velocity layer in the lower crust of the Lhasa block,the spatial distribution of crustal channel flow,and the decoupling of shallow and deep crustal deformation,are synthesized to gain insights into the crustal structures,and multidisciplinary data are integrated to discuss the potential mechanisms of the plateau uplift.Lastly,some pertinent suggestions are put forward for future research on the Tibetan Plateau.展开更多
基金supported by the Supercomputing Laboratory at the Institute of Geology and Geophysics,Chinese Academy of Sciencessupported by the National Natural Science Foundation of China (Grant No.42074067)the Key Research Program of the Institute of Geology and Geophysics,CAS (Grant No.IGGCAS-202204)。
文摘The Tibetan Plateau has been known for its highest elevation and thickest crust on earth,and become a key region for comprehending the rheology and tectonic evolution of continental plates and associated dynamic processes.Over the past years,numerous geophysical studies have been conducted to explore the deep structure of the Tibetan Plateau,resulting in significant advancements in understanding the formation and growth of the Plateau.This paper aims to provide a comprehensive summary and discussion of the geophysical observations and underlying mechanisms of the plateau uplift.First,major relevant tectonic models are reviewed,and the corresponding features of crustal structures and related deformation are presented.Then,recent observations,including the identification of a high-velocity layer in the lower crust of the Lhasa block,the spatial distribution of crustal channel flow,and the decoupling of shallow and deep crustal deformation,are synthesized to gain insights into the crustal structures,and multidisciplinary data are integrated to discuss the potential mechanisms of the plateau uplift.Lastly,some pertinent suggestions are put forward for future research on the Tibetan Plateau.