期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Uplift Resistance Calculation and Sensitive Analysis of Jack-up Wind Installation Vessels
1
作者 刘志杰 刘晓宇 +1 位作者 孙德平 林成新 《Journal of Donghua University(English Edition)》 EI CAS 2016年第2期210-214,共5页
The uplift resistance calculation is an important basis for the construction decisions of the jack-up wind installation vessel and the design of the jacking system,and determines the operation risk and reliability in ... The uplift resistance calculation is an important basis for the construction decisions of the jack-up wind installation vessel and the design of the jacking system,and determines the operation risk and reliability in the installation process of the wind turbine. The influence factors of the pile shoe's penetration depth and uplift resistance are analyzed,and the calculation model and flow of the uplift resistance are given. Based on a construction example,the influence rules are analyzed for the change of the pile shoe's structural parameters on the penetration depth and uplift resistance.The analysis results show that the penetration depth is more sensitive to the width of the pile shoe,and the height has greater influence on the uplift resistance than the length and width of the spud. With the increase of the height,the uplift resistance may increase rapidly.Although the decreases of the length,width and height of the pile shoe may reduce the uplift resistance,the penetration depth may increase in the meantime. This will increase the pulling pile time and reduce the construction efficiency. So the parameters of the pile shoe should be optimized according to the adaptable geology condition so as to obtain the optimal uplift resistance and working efficiency. 展开更多
关键词 jack-up wind installation vessel uplift resistance penetration depth pile shoe’s structural parameters
下载PDF
Experimental study on uplift mechanism of pipeline buried in sand using high-resolution fiber optic strain sensing nerves 被引量:8
2
作者 Haojie Li Honghu Zhu +2 位作者 Yuanhai Li Chunxin Zhang Bin Shi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第4期1304-1318,共15页
Reliable assessment of uplift capacity of buried pipelines against upheaval buckling requires a valid failure mechanism and a reliable real-time monitoring technique.This paper presents a sensing solution for evaluati... Reliable assessment of uplift capacity of buried pipelines against upheaval buckling requires a valid failure mechanism and a reliable real-time monitoring technique.This paper presents a sensing solution for evaluating uplift capacity of pipelines buried in sand using fiber optic strain sensing(FOSS)nerves.Upward pipe-soil interaction(PSI)was investigated through a series of scaled tests,in which the FOSS and image analysis techniques were used to capture the failure patterns.The published prediction models were evaluated and modified according to observations in the present study as well as a database of 41 pipe loading tests assembled from the literature.Axial strain measurements of FOSS nerves horizontally installed above the pipeline were correlated with the failure behavior of the overlying soil.The test results indicate that the previous analytical models could be further improved regarding their estimations in the failure geometry and mobilization distance at the peak uplift resistance.For typical slip plane failure forms,inclined shear bands star from the pipe shoulder,instead of the springline,and have not yet reached the ground surface at the peak resistance.The vertical inclination of curved shear bands decreases with increasing uplift displacements at the post-peak periods.At large displacements,the upward movement is confined to the deeper ground,and the slip plane failure progressively changes to the flow-around.The feasibility of FOSS in pipe uplift resistance prediction was validated through the comparison with image analyses.In addition,the shear band locations can be identified using fiber optic strain measurements.Finally,the advantages and limits of the FOSS system are discussed in terms of different levels in upward PSI assessment,including failure identification,location,and quantification. 展开更多
关键词 Pipe-soil interaction(PSI) Upheaval buckling Distributed strain sensing Image analysis uplift resistance prediction Interfacial behavior
下载PDF
Determination of minimum overburden depth for underwater shield tunnel in sands:Comparison between circular and rectangular tunnels 被引量:3
3
作者 Weixin Sun Fucheng Han +4 位作者 Hanlong Liu Wengang Zhang Yanmei Zhang Weijia Su Songlin Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第7期1671-1686,共16页
With the development of global urbanization,the utilization of underground space is more critical and attractive for civil purposes.Various shapes of shield tunnels have been gradually proposed to cope with different ... With the development of global urbanization,the utilization of underground space is more critical and attractive for civil purposes.Various shapes of shield tunnels have been gradually proposed to cope with different geological conditions and service purposes of underground structures.Generally,reducing the burial depth of shield tunnel is conducive to construction and cost saving.However,extremely small overburden depth cannot provide sufficient uplift resistance to maintain the stability and serviceability of the tunnel.To this end,this paper firstly reviewed the status of deriving the minimum sand over-burden depth of circular shield tunnel using mechanical equilibrium(ME)method.It revealed that the estimated depth is rather conservative.Then,the uplift resistance mechanism of both circular and rectangular tunnels was deduced theoretically and verified with the model tests.The theoretical uplift resistance is consistent with the experimental values,indicating the feasibility of the proposed equations.Furthermore,the determination of the minimum soil overburden depth of rectangular shield tunnel under various working conditions was presented through integrated ME method,which can provide more reasonable estimations of suggested tunnel burial depth for practical construction.Additionally,optimizations were made for calculating the uplift resistance,and the soil thickness providing uplift resistance is suggested to be adjusted according to the testing results.The results can provide reference for the design and construction of various shapes of shield tunnels in urban underground space exploitation. 展开更多
关键词 Minimum overburden depth uplift resistance mechanism Shield tunnel shape Tunnel anti-floating
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部