期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
MHD flow and mass transfer of chemically reactive upper convected Maxwell fluid past porous surface 被引量:1
1
作者 K. VAJRAVELU K. V. PRASAD +1 位作者 A. SUJATHA 吴朝安 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2012年第7期899-910,共12页
The magnetohydrodynamic (MHD) flow and mass transfer of an electrically conducting upper convected Maxwell (UCM) fluid at a porous surface are studied in the presence of a chemically reactive species. The governin... The magnetohydrodynamic (MHD) flow and mass transfer of an electrically conducting upper convected Maxwell (UCM) fluid at a porous surface are studied in the presence of a chemically reactive species. The governing nonlinear partial differential equations along with the appropriate boundary conditions are transformed into nonlinear ordinary differential equations and numerically solved by the Keller-box method. The effects of various physical parameters on the flow and mass transfer characteristics are graphically presented and discussed. It is observed that the order of the chemical reaction is to increase the thickness of the diffusion boundary layer. Also, the mass transfer rate strongly depends on the Schmidt number and the reaction rate parameter. Furthermore, available results in the literature are obtained as a special case. 展开更多
关键词 chemically reactive species upper convected maxwell (UCM) fluid mag-netohydrodynamic (MHD) flow mass transfer Keller-box method
下载PDF
Effects of transpiration on unsteady MHD flow of an upper convected Maxwell (UCM) fluid passing through a stretching surface in the presence of a first order chemical reaction
2
作者 Swati Mukhopadhyay M.Golam Arif M.Wazed Ali Pk 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第12期315-322,共8页
The aim of this article is to present the effects of transpiration on the unsteady two-dimensional boundary layer flow of non-Newtonian fluid passing through a stretching sheet in the presence of a first order constru... The aim of this article is to present the effects of transpiration on the unsteady two-dimensional boundary layer flow of non-Newtonian fluid passing through a stretching sheet in the presence of a first order constructive/destructive chemical reaction. The upper-convected Maxwell (UCM) model is used here to characterize the non-Newtonian behavior of the fluid. Using similarity solutions, the governing nonlinear partial differential equations are transformed into ordinary ones and are then solved numerically by the shooting method. The flow fields and mass transfer are significantly influenced by the governing parameters. The fluid velocity initially decreases as the unsteadiness parameter increases and the concentration decreases significantly due to the increase in the unsteadiness. The effect of increasing values of transpiration (suction) and the Maxwell parameter is to suppress the velocity field; however, the concentration is enhanced as transpiration (suction) and the Maxwell parameter increase. Also, it is found that the fluid velocity decreases as the magnetic parameter increases; however, the concentration increases in this case. 展开更多
关键词 unsteady flow MHD upper convected maxwell fluid stretching surface transpiration chemical reaction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部