期刊文献+
共找到2,824篇文章
< 1 2 142 >
每页显示 20 50 100
River width and depth as key factors of diurnal activity energy expenditure allocation for wintering Spot-billed Ducks in the Xin'an River Basin
1
作者 Chao Yu Xuying Lu +3 位作者 Deli Sun Mengnan Chu Xueyun Li Qun Li 《Avian Research》 SCIE CSCD 2024年第1期116-122,共7页
Rivers are important habitats for wintering waterbirds.However,they are easily influenced by natural and human activities.An important approach for waterbirds to adapt to habitats is adjusting the activity time and en... Rivers are important habitats for wintering waterbirds.However,they are easily influenced by natural and human activities.An important approach for waterbirds to adapt to habitats is adjusting the activity time and energy expenditure allocation of diurnal behavior.The compensatory foraging hypothesis predicts that increased energy expenditure leads to longer foraging time,which in turn increases food intake and helps maintain a constant energy balance.However,it is unclear whether human-disturbed habitats result in increased energy expenditure related to safety or foraging.In this study,the scan sample method was used to observe the diurnal behavior of the wintering Spot-billed Duck(Anas poecilorhyncha) in two rivers in the Xin’an River Basin from October 2021 to March 2022.The allocation of time and energy expenditure for activity in both normal and disturbed environments was calculated.The results showed that foraging accounted for the highest percentage of time and energy expenditure.Additionally,foraging decreased in the disturbed environment than that in the normal environment.Resting behavior showed the opposite trend,while other behaviors were similar in both environments.The total diurnal energy expenditure of ducks in the disturbed environment was greater than that in the normal environment,with decreased foraging and resting time percentage and increased behaviors related to immediate safety(swimming and alert) and comfort.These results oppose the compensatory foraging hypothesis in favor of increased security.The optimal diurnal energy expenditure model included river width and water depth,which had a positive relationship;an increase in either of these two factors resulted in an increase in energy expenditure.This study provides a better understanding of energy allocation strategies underlying the superficial time allocation of wintering waterbirds according to environmental conditions.Exploring these changes can help understand the maximum fitness of wintering waterbirds in response to nature and human influences. 展开更多
关键词 Diurnal behavior activities river factors Time and energy expenditure allocation Wintering Spot-billed Duck xin’an river Basin
下载PDF
Spatiotemporal Characteristics of Typical Ecosystem Services and Their Spatial Responses to Driving Factors in Ecologically Fragile Areas in Upper Yellow River,China
2
作者 LIANG Gui FANG Fengman +1 位作者 LIN Yuesheng ZHANG Zhiming 《Chinese Geographical Science》 SCIE CSCD 2024年第4期674-688,共15页
The identification of dominant driving factors for different ecosystem services(ESs)is crucial for ecological conservation and sustainable development.However,the spatial heterogeneity of the dominant driving factors ... The identification of dominant driving factors for different ecosystem services(ESs)is crucial for ecological conservation and sustainable development.However,the spatial heterogeneity of the dominant driving factors affecting various ESs has not been adequately elucidated,particularly in ecologically fragile regions.This study employed the integrated valuation of ESs and trade-offs(InVEST)model to evaluate four ESs,namely,water yield(WY),soil conservation(SC),habitat quality(HQ),and carbon storage(CS),and then to identify the dominant driving factors of spatiotemporal differentiation of ES and further to characterize the spatial heterogeneity characteristics of the dominant driving factors in the eco-fragile areas of the upper Yellow River,China from 2000 to 2020.The results demonstrated that WY exhibited northeast-high and northwest-low patterns in the upper Yellow River region,while high values of SC and CS were distributed in central forested areas and a high value of HQ was distributed in vast grassland areas.The CS,WY,and SC exhibited decreasing trends over time.The most critical factors affecting WY,SC,HQ,and CS were the actual evapotranspiration,precipitation,slope,and normalized difference vegetation index,respectively.In addition,the effects of different factors on various ESs exhibited spatial heterogeneity.These results could provide spatial decision support for eco-protection and rehabilitation in ecologically fragile areas. 展开更多
关键词 integrated valuation of ecosystem services and trade-offs(InVEST)model geographically weighted regression(GWR) natural factor spatial heterogeneity Lanxi urban agglomeration upper Yellow river China
下载PDF
Responses to climate warming of hydrological processes in the upper Kelan River in the Altay Mountains, Xinjiang, China 被引量:3
3
作者 YongPing Shen GuoYa Wang +3 位作者 QingBai Wu NingLian Wang WeiYi Mao HongChao Su 《Research in Cold and Arid Regions》 2010年第4期315-327,共13页
Kelan River is a branch of the Ertix River, originating in the Altay Mountains in Xinjiang, northwestern China. The upper streams of the Kelan River are located on the southern slope of the Altay Mountains; they arise... Kelan River is a branch of the Ertix River, originating in the Altay Mountains in Xinjiang, northwestern China. The upper streams of the Kelan River are located on the southern slope of the Altay Mountains; they arise from small glacial lakes at an elevation of more than 2,500 m. The total water-collection area of the studied basin, from 988 to 3,480 m, is about 1,655 km2. Almost 95 percent of the basin area is covered with snow in winter. The westerly air masses deplete nearly all the moisture that comes in the form of snow during the winter months in the upper and middle reaches of the basin. That annual flow from the basin is about 382 mm, about 45 percent of which is contributed by snowmelt. The mean annual precipitation in the basin is about 620 mm, which is primarily concentrated in the upper and middle basin. The Kelan River system could be vulnerable to climate change because of substantial contribution from snowmelt runoff. The hydrological system could be altered significantly because of a warming of the climate. The impact of climate change on the hydrological cycle and events would pose an additional threat to the Altay region. The Kelan River, a typical snow-dominated watershed, has more area at higher elevations and accumulates snow during the winter. The peak flow occurs as a result of snow-melting during the late spring or early summer. Stream flow varies strongly throughout the year because of seasonal cycles of precipitation, snowpack, temperature, and groundwater. Changes in the temperature and precipitation affect the timing and volume of stream-flow. The stream-flow consists of contributions from meltwater of snow and ice and from runoff of rainfall. Therefore, it has low flow in winter, high flow during the spring and early summer as the snowpack melts, and less flows during the late summer. Because of the warming of the current climate change, hydrology processes of the Kelan River have undergone marked changes, as evidenced by the shift of the maximum flood peak discharge from May to June; the largest monthly runoffs also have an increment of about 15 percent related to before 1980; April-June runoff increased from the 60 percent of the annual runoff before 1980 to nearly 70 percent after 1990. The long-term trend shows temperature and precipitation increased mainly in the winter, but the rainfall declined in summer; hydrological process is manifested by the rising runoff in May and decreasing in June. Warming and the increase of winter and spring snowcover would lead to increased snowmelt, increasing the spring-flood hazards and the maximum flood discharge with disastrous consequences. The changed hydrological patterns caused by climate change have already impacted the urban water supply and agricultural and livestock production along the river. 展开更多
关键词 climate warming snowmelt runoff response upper Kelan river the Altay Mountains
下载PDF
Research on Spatial Distribution of Settlements in the Upper Reaches of the Minjiang River
4
作者 Lijun Song Shujun Tian +1 位作者 Lan Yang Na Fan 《Open Journal of Applied Sciences》 2023年第11期1967-1981,共15页
Under the background of the uplift of the Qinghai-Tibet Plateau, the settlements in the upper reaches of the Min River are significantly affected by the mountain environment, and their spatial distribution is typical ... Under the background of the uplift of the Qinghai-Tibet Plateau, the settlements in the upper reaches of the Min River are significantly affected by the mountain environment, and their spatial distribution is typical and representative. In this study, the relationship between settlements and topography, rivers and transportation, and the spatial distribution patterns of settlements, such as the aggregation and orientation characteristics of settlements, have been studied. The main conclusions include: 1) The settlement density decreases with the increase of elevation, slope, and distance from rivers and roads;76.25% and 63.17% of the settlements are distributed in the range of elevation 1500 - 3000 m and slope 6° - 25°, the upper reaches of the Min River are mostly alpine valley terrain, the bottom of the river has a low altitude, the landscape is undulating. The warm and humid climate is suitable for farming, conducive to agricultural production, and an ideal living environment for mountain residents. 2) The nuclear density of the settlement is distributed in strips along the axis of the river, and the closer to the river, the greater the nuclear density value. 3) Mathematical statistical methods were applied for the first time to realize the quantitative expression of the coupling of settlement and river direction. The influence of topographic conditions in different watersheds on the coupling degree of settlement extension and river flow direction was revealed. The slope of the fitted straight line between the settlement and river direction was 0.897, and the two directions were consistent. Except for the mainstream of the Min River, the larger values of the standard deviation ellipse flattening of settlements in each basin appeared in the upper reaches of the bay, and the overall trend showed a gradual decrease from the upstream to the downstream, which was consistent with the topographic change characteristics of the basin. 展开更多
关键词 Settlement Spatial Distribution AGGLOMERATION Alpine Valleys The upper Reaches of the Minjiang river
下载PDF
Channel change at Toudaoguai Station and its responses to the operation of upstream reservoirs in the upper Yellow River 被引量:53
5
作者 RAN Lishan WANG Suiji FAN Xiaoli 《Journal of Geographical Sciences》 SCIE CSCD 2010年第2期231-247,共17页
The application of dams built upstream will change the input conditions, including water and sediment, of downstream fluvial system, and destroy previous dynamic quasi-equilibrium reached by channel streamflow, so ind... The application of dams built upstream will change the input conditions, including water and sediment, of downstream fluvial system, and destroy previous dynamic quasi-equilibrium reached by channel streamflow, so indispensable adjustments are necessary for downstream channel to adapt to the new water and sediment supply, leading the fluvial system to restore its previous equilibrium or reach a new equilibrium. Using about 50-year-long hydrological, sedimentary and cross-sectional data, temporal response processes of Toudaoguai cross-section located in the upper Yellow River to the operation of reservoirs built upstream are analyzed. The results show that the Toudaoguai cross-section change was influenced strongly by upstream reservoir operation and downstream channel bed armoring thereafter occurred gradually and extended to the reach below Sanhuhekou gauging station. Besides, median diameter of suspended sediment load experienced a three-stage change that is characterized by an increase at first, then a decrease and an increase again finally, which reflects the process of channel bed armoring that began at Qingtongxia reservoir and then gradually developed downstream to the reach below Sanhuhekou cross-section. Since the joint operation strategy of Longyangxia, Liujiaxia and Qingtongxia reservoirs was introduced in 1986, the three-stage change trend has become less evident than that in the time period between 1969 and 1986 when only Qingtongxia and Liujiaxia reservoirs were put into operation alone. In addition, since 1987, the extent of lateral migration and thalweg elevation change at Toudaoguai cross-section has reduced dramatically, cross-sectional profile and location tended to be stable, which is beneficial to the normal living for local people. 展开更多
关键词 cross-sectional profile median diameter reservoir Toudaoguai cross-section the upper Yellow river
下载PDF
Landslide Developmental Characteristics and Response to Climate Change since the Last Glacial in the Upper Reaches of the Yellow River, NE Tibetan Plateau 被引量:18
6
作者 YIN Zhiqiang QIN Xiaoguang +2 位作者 YIN Yueping ZHAO Wuji WEI Gang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2014年第2期635-646,共12页
The upper reaches of the Yellow River in northeastern Tibetan Plateau are geohazards areas.The evolution of the Yellow River,chronology of some landslides,and spatiotemporal distribution characteristics of super large... The upper reaches of the Yellow River in northeastern Tibetan Plateau are geohazards areas.The evolution of the Yellow River,chronology of some landslides,and spatiotemporal distribution characteristics of super large scale and giant landslides within the region are summarized using paleoclimate evidence,and the relationship between the intensive landslide period and climatic changes since the Last Glacial period is analyzed.It is concluded that (1) Super large scale and giant landslides are distributed widely within the region,particularly in the Qunke-Jianzha basin.(2) The chronological sequence of landslides is established by dating the slip zones of landslides and analyzing the relations between landslides and their overlying or underlying loess formations.Five landslide development periods are determined:53-49 ka BP,33-24 ka BP,10-8 ka BP,5-3.5 ka BP,and the present.(3) These correspond closely to warm and wet periods during the last 100,000 years,i.e.,two weak paleosol development stages of Malan loess deposited during the last Glacial period in the Chinese loess Plateau,L1-4 and L1-2 that belong to the marine oxygen isotope stage 3,the last deglaeial period,the Holocene Optimum,and the modern global warming period.(4) Landslide triggers may be closely linked to warm and wet periods related to rapid climatic transitions. 展开更多
关键词 LANDSLIDE developmental characteristics climate change upper reaches of the Yellow river response
下载PDF
Phases of Environmental Evolution Indicated by Primary Chemical Elements and Paleontological Records in the Upper Pleistocene-Holocene Series for the Salawusu River Valley,China 被引量:17
7
作者 LI Baosheng WEN Xiaohao +5 位作者 QIU Shifan David Dian ZHANG DU Shuhuan CHEN Deniu OU Xianjiao NIU Dongfeng 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2007年第4期555-565,共11页
Studies of lithology, sedimentary facies and the distribution regularity of SiO2 and Al2O3 contents and Al2O3/SiO2 ratio allow us to divide the Upper Pleistocene-Holocene Series represented by the MUanggouwan section ... Studies of lithology, sedimentary facies and the distribution regularity of SiO2 and Al2O3 contents and Al2O3/SiO2 ratio allow us to divide the Upper Pleistocene-Holocene Series represented by the MUanggouwan section in China's Salawnsu River valley into six segments: MGS1, MGS2, MGS3, MGS4, MGS5 and MGS6. The boundary ages for MGS1 (the Dishaogouwan and Dagouwan Formations), MGS2 (the upper Chengchuan Formation), MGS3 (the middle Chengchuan Formation), MGS4 (the lower Chengchuan Formation), MGS5 (most strata of the Salawusu Formation) and MGS6 (the bottom of the Salawusu Formation and the top of the Lishi Formation) correspond to those of MIS1, MIS2, MIS3, MIS4, MISS and MIS6, respectively, from deep sea sediments or continental glaciers. MGS5 can be subdivided into five subsegments (MGS5a, MGS5b, MGS5c, MGS5d and MGS5e) and the boundary ages of these subsegments correspond to those of MISSa, MISSb, MIS5c, MIS5d and MIS5e, respectively. Based on the paleoenvironment and paleoecology indicated by the primary chemical elements, fossil vertebrates, mollusks and pollen grains, we hypothesize that MGS1, MGS2, MGS3, MGS4, MGS5 and MGS6 and the subsegments of MGS5 match the corresponding stages for oxygen isotopes in the deep sea sediments and continental glaciers, and the substages of MIS5 in terms of climatic characters, further explaining the phenomena that determined the formation of the late Quaternary strata and the paleontology of the Salawusu River valley. These phenomena relate to fluctuations in the global climate (and particularly in the East Asian monsoon) during the glacial and interglacial periods. 展开更多
关键词 Salawusu river valley upper Pleistocene-Holocene Series primary chemical elements phases of evolution paleontological records
下载PDF
Residents’ perspectives and responses to environmental degradation in the upper Dadu River, eastern Tibetan Plateau 被引量:7
8
作者 YAN Jianzhong ZHANG Yili +4 位作者 LIU Linshan BAI Wanqi ZHU Huiyi SHI Yulin ZHENG Du 《Journal of Geographical Sciences》 SCIE CSCD 2006年第3期293-305,共13页
Environmental degeneration in the Tibetan Plateau attracts worldwide attention, whereas case studies on how the residents understand and respond to environmental degeneration are scarce. Using a Participatory Rural Ap... Environmental degeneration in the Tibetan Plateau attracts worldwide attention, whereas case studies on how the residents understand and respond to environmental degeneration are scarce. Using a Participatory Rural Appraisal method, this paper investigates how the people in different regions in the upper Dadu River understand and respond to environmental degeneration, based on comparative field surveys in three villages, in which Danzamu village is chosen from villages in the valley region, Kerma village from mountainside region, Rico village from the mountain and plateau region. The results show that: (1) although awakened to environmental degeneration, the residents in different regions have different responses. As agricultural labors have been transferred to the secondary and tertiary industries, population pressure in Danzamu and Kerma villages is mitigated. Residents in Danzamu village actively respond to natural disasters and forest degradation, as their livelihoods never rely on forests and rangelands again. Whereas the residents in Kerma village negatively respond to natural disasters, forest and meadow degradation and the ruin of wildlife resources, as their livelihoods still rely on stockbreeding. Labors in Rico village are hard to transfer to the secondary and tertiary industries, so they have to raise more livestock to make a living. Active measures are just taken to avoid livestock loss, not to avoid forest and meadow degradation and the ruin of wildlife resources. So the most fragile region is the mountain and plateau region and mountainside region, not the valley region. (2) Livelihood strategy is the key factor affecting the residents to respond to population pressure and environmental degeneration. So the framework of sustainable livelihood strategy should be used to explain and intervene in issues of population pressure and environmental degradation in ecotones. (3) Transferring agricultural labors to the secondary and tertiary industries were favorable to improving people's livelihood. It is necessary to reduce the education fees to speed up the pace of labors transferring in the mountainside region. In the mountain and plateau region, preferable ways also include the development of towns, highways, education equipment and other establishments. 展开更多
关键词 environmental degradation RESPONSE the upper Dadu river livelihood strategy Tibetan Plateau
下载PDF
GIS-Based Risk Assessment of Debris Flow Disasters in the Upper Reach of Yangtze River 被引量:9
9
作者 HAN Yongshun LIU Hongjiang +2 位作者 ZHONG Dunlun SU Fenghuan LI Chaokui 《Wuhan University Journal of Natural Sciences》 CAS 2007年第4期657-662,共6页
This paper discussed theory and methodologies of debris-flow risk assessment and established an implementation process according to indicators of debris-flow hazard degree, vulnerability, risk degree, etc. Among these... This paper discussed theory and methodologies of debris-flow risk assessment and established an implementation process according to indicators of debris-flow hazard degree, vulnerability, risk degree, etc. Among these methodologies, historical and potential hazard degree was comprehensively considered into hazard assessment and hazard index was presented to indicate the debris-flow hazard degree. Regarding debris-flow vulnerability assessment, its statistical data and calculating procedure were based on the hazard-degree regionalization instead of administrative divisions, which improved the assessing scientificity and precision. These quantitative methodologies integrated with Geography Information System (GIS) were applied to the risk assessment of debris flows in the upper reach of Yangtze River. Its results were in substantial agreement on investigation data and the actual distribution of debris flows, which showed that these principles and methodologies were reasonable and feasible and can provide basis or reference for debris-flow risk assessment and disaster management. 展开更多
关键词 debris flow risk assessment principles and methodologies geography information system upper reach of Yangtze river
下载PDF
Runoff of the upper Yellow River above Tangnag: characteristics, evolution and changing trends 被引量:5
10
作者 LAN Yong-chao1, KANG Er-si1, MA Quan-jie2, ZHANG Ji-shi1, CHEN Ren-sheng1 (1. Cold and Arid Regions Environmental and Engineering Research Institute, CAS, Lanzhou 730000, China 2. Hydrology and Water Resources Bureau of the Upper Yellow River Basin, L 《Journal of Geographical Sciences》 SCIE CSCD 2001年第3期297-304,共8页
Runoff and its evolution, based on hydrometeorological data from surface measurement stations, are analyzed for the upper reaches of the Yellow River above Tangnag. Some mathematical statistical models, for example, P... Runoff and its evolution, based on hydrometeorological data from surface measurement stations, are analyzed for the upper reaches of the Yellow River above Tangnag. Some mathematical statistical models, for example, Period Extrapolation-Gradual Regression Model, Grey Topology Forecast Model and Box-Jinkins Model, are applied in predicting changing trends on the runoff. The analysis indicates that the runoff volume in the upper Yellow River above Tangnag is ending a period of extended minimum flows. Increasing runoff is expected in the coming years. 展开更多
关键词 RUNOFF upper Yellow river TREND FORECAST
下载PDF
Two Village Ecosystems in the Upper Minjiang River, China: A Comparison of Emergy Flow 被引量:6
11
作者 Chen Yong, Chen Guojie, Wang QingInstitute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China Institute of Environmental Science and Engineering, Sichuan University, Chengdu 610064, Sichuan, China 《Wuhan University Journal of Natural Sciences》 CAS 2003年第03B期935-939,共5页
By using the concept of emergy and method of emergy analysis, this paper has studied two mountain settlement (village) ecosystems in two aspects: input and output of energy in the agro-systems and the use of fuel ener... By using the concept of emergy and method of emergy analysis, this paper has studied two mountain settlement (village) ecosystems in two aspects: input and output of energy in the agro-systems and the use of fuel energy. The result reveals that the settlement agro-system in the valley of Minjiang River is better in both structure and function than that at the so-called half-high mountain. The former one is higher than the latter one regarding such indices as emergy yield ratio, labor productivity of emergy and emergy sustainable index, but lower than the latter one regarding environmental loading ratio. In terms of fuel emergy, the settlement in the valley enjoys more diversified sources and is less depending on bio-energy while the settlement at the half-high mountain has only one source (i. e. fuel wood) , much depending on bio-energy, may exert a greater pressure on environment. 展开更多
关键词 upper Minjiang river settlement (village) ECOSYSTEM EMERGY
下载PDF
The relationship between ENSO cycle and high and low-flow in the upper Yellow River 被引量:8
12
作者 LANYongchao DINGYongjiang +2 位作者 KANGErsi MAQuanjie ZHANGJishi 《Journal of Geographical Sciences》 SCIE CSCD 2003年第1期105-111,共7页
Firstly, the hydrological and meteorological features of the upper reaches of the Yellow River above Tangnag are analyzed based on observation data, and effects of EI Nino and La Ni na events on the high and low flow ... Firstly, the hydrological and meteorological features of the upper reaches of the Yellow River above Tangnag are analyzed based on observation data, and effects of EI Nino and La Ni na events on the high and low flow in the upper Yellow River are discussed. The results show El Nino and La Nina events possess consanguineous relationship wi th runoff in the upper Yellow River. As a whole, the probability of low fl ow occurrence in the upper Yellow River is relatively great along wit h the occurrence of El Nino event. Moreover, the flood in the upper Yellow River occurs frequently with the occurrence of La Nina event. Besides, the results also show dissimilarity of El Nino event occurri ng time exerts greater impact on high flow and low flow in the uppe r Yellow River, that is, the probability of drought will be greater in the sam e year if El Nino event occurs in spring, the high-flow may happen in this y ear if El Nino occurs in summer or autumn; the longer the continuous period of El Nino is, the lower the runoff in the upper Yellow River is. 展开更多
关键词 El Nino event La Nina event the upper Yellow river high-flow and low-flow
下载PDF
Coupling Mechanism of Rural Settlements and Mountain Disasters in the Upper Reaches of Min River 被引量:4
13
作者 DING Ming-tao CHENG Zun-lan WANG Qing 《Journal of Mountain Science》 SCIE CSCD 2014年第1期66-72,共7页
Human settlements are the place where human beings live,among which the rural settlements can be regarded as a reflection of human-land relationship in mountain areas because their vertical distribution is greatly inf... Human settlements are the place where human beings live,among which the rural settlements can be regarded as a reflection of human-land relationship in mountain areas because their vertical distribution is greatly influenced by the specific geographical environment and ecological conditions of mountains.Based on field investigation,this paper uses physical,geographical,and ecological theories to make a comprehensive study of rural settlements and mountain disasters in the upper Min River,which is an ecologically fragile area with high-frequency disasters(collapse,landslide,debris flow,etc.) and a minority inhabit district.By applying these modern scientific theories,this paper attempts to shed some light on the relationship between rural settlements and mountain disasters.Consequently,an in-depth understanding of this relationship was achieved as follows:(1) Rural settlements and mountain disasters are mainly distributed in the intercepted flows of water and soil; and both quantity and quality of arable lands in mountains are important indicators of these flows.(2) The Small Watershed Management Project is a complex system of rural settlements and mountain disasters that interacts with and constrains the ecological system.By this project,the human survival will be better guaranteed.Being fundamental for the ecological reconstruction,the coupling mechanism of rural settlements and mountain disasters is not only an engine to promote harmonious development between human and nature,but also a bridge to link them. 展开更多
关键词 The upper reaches of Min river MOUNTAIN DISASTER RURAL SETTLEMENT Coupling mechanism Remote sensing
下载PDF
Optically Stimulated Luminescence(OSL) Chronology of the Dehenglong Landslide from Longyang Gorge to Liujia Gorge along Upper Yellow River, China 被引量:4
14
作者 GUO Xiaohua LAI Zhongping +2 位作者 LU Yudong LI Xiaolin SUN Zheng 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2015年第1期242-250,共9页
Giant landslides are common along the upper Yellow River from Longyang Gorge to Liujia Gorge, and some of them even blocked and dammed the upper Yellow River. Chronology is inevitable in studying the mechanism of gian... Giant landslides are common along the upper Yellow River from Longyang Gorge to Liujia Gorge, and some of them even blocked and dammed the upper Yellow River. Chronology is inevitable in studying the mechanism of giant landslides. Controversy exists about the chronology of those giant landslides, and some have not yet dated. The Dehenglong landslide is the largest one among them. In this study, OSL samples were collected from lacustrine silty sediments and loess directly overlying the landslide sediments, as well as fault sediments related to the landslide. This landslide yielded an age of 89 ±8 ka, which is identical with the fault age of 73 ±5 ka at two sigma errors. The agreement of a topographic analysis and the absolute age of landslides imply that the formation of the Dehenglong landslide is strongly correlated with the tectonic activity. 展开更多
关键词 LANDSLIDE OSL upper Yellow river in China Qinghai-Tibetan Plateau
下载PDF
Tree-ring-based reconstruction of temperature variability(1445–2011) for the upper reaches of the Heihe River Basin, Northwest China 被引量:5
15
作者 WANG Yamin FENG Qi KANG Xingcheng 《Journal of Arid Land》 SCIE CSCD 2016年第1期60-76,共17页
Long-term temperature variability has significant effects on runoff into the upper reaches of inland rivers. This paper developed a tree-ring chronology of Qilian juniper (Sabina przewalskii Kom.) from the upper tree-... Long-term temperature variability has significant effects on runoff into the upper reaches of inland rivers. This paper developed a tree-ring chronology of Qilian juniper (Sabina przewalskii Kom.) from the upper tree-line of the middle Qilian Mountains within the upper reaches of Heihe River Basin, Northwest China for a long-term reconstruction of temperature at the study site. In this paper, tree-ring chronology was used to examine climate-growth associations considering local climate data obtained from Qilian Meteorological Station. The results showed that temperatures correlated extremely well with standardized growth indices of trees (r=0.564, P<0.001). Tree-ring chronology was highest correlated with annual mean temperature (r=0.641, P<0.0001). Annual mean temperature which spans the period of 1445–2011 was reconstructed and explained 57.8% of the inter-annual to decadal temperature variance at the regional scale for the period 1961–2011. Spatial correlation patterns revealed that reconstructed temperature data and gridded temperature data had a significant correlation on a regional scale, indicating that the reconstruction represents climatic variations for an extended area surrounding the sampling sites. Analysis of the temperature reconstruction indicated that major cold periods occurred during the periods of 1450s–1480s, 1590s–1770s, 1810s–1890s, 1920s–1940s, and 1960s–1970s. Warm intervals occurred during 1490s–1580s, 1780s–1800s, 1900s–1910s, 1950s, and 1980s to present. The coldest 100-year and decadal periods occurred from 1490s–1580s and 1780s–1800s, respectively, while the warmest 100 years within the studied time period was the 20<sup>th</sup> century. Colder events and intervals coincided with wet or moist conditions in and near the study region. The reconstructed temperature agreed well with other temperature series reconstructed across the surrounding areas, demonstrating that this reconstructed temperature could be used to evaluate regional climate change. Compared to the tree-ring reconstructed temperature from nearby regions and records of glacier fluctuations from the surrounding high mountains, this reconstruction was reliable, and could aid in the evaluation of regional climate variability. Spectral analyses suggested that the reconstructed annual mean temperature variation may be related to large-scale atmospheric–oceanic variability such as the solar activity, Pacific Decadal Oscillation (PDO) and El Ni?o–Southern Oscillation (ENSO). 展开更多
关键词 TREE-RING climatic response temperature reconstruction upper reaches of Heihe river Basin
下载PDF
Capability of TMPA products to simulate streamflow in upper Yellow and Yangtze River basins on Tibetan Plateau 被引量:3
16
作者 Zhen-chun HAO Kai TONG +1 位作者 Xiao-li LIU Lei-lei ZHANG 《Water Science and Engineering》 EI CAS CSCD 2014年第3期237-249,共13页
Due to the high elevation, complex terrain, severe weather, and inaccessibility, direct meteorological observations do not exist over large portions of the Tibetan Plateau, especially the western part of it. Satellite... Due to the high elevation, complex terrain, severe weather, and inaccessibility, direct meteorological observations do not exist over large portions of the Tibetan Plateau, especially the western part of it. Satellite rainfall estimates have been very important sources for precipitation information, particularly in rain gauge-sparse regions. In this study, Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) products 3B42, RTV5V6, and RTV7 were evaluated for their applicability to the upper Yellow and Yangtze River basins on the Tibetan Plateau. Moreover, the capability of the TMPA products to simulate streamflow was also investigated using the Variable Infiltration Capacity (VIC) semi-distributed hydrological model. Results show that 3B42 performs better than RTVSV6 and RTV7, based on verification of the China Meteorological Administration (CMA) observational precipitation data. RTVSV6 can roughly capture the spatial precipitation pattern but overestimation exists throughout the entire study region. The anticipated improvements of RTV7 relative to RTVSV6 have not been realized in this study. Our results suggest that RTV7 significantly overestimates the precipitation over the two river basins, though it can capture the seasonal cycle features of precipitation. 3B42 shows the best performance in streamflow simulation of the abovementioned satellite products. Although involved in gauge adjustment at a monthly scale, 3B42 is capable of daily streamflow simulation. RTV5V6 and RTV7 have no capability to simulate streamflow in the upper Yellow and Yangtze River basins. 展开更多
关键词 TMPA CMA precipitation data VIC hydrological model streamflow simulation upper Yellow and Yangtze river basins
下载PDF
Application of TOPMODEL in Buliu River Basin and comparison with Xin’anjiang model 被引量:4
17
作者 Deng Peng Li Zhijia Xie Fan 《Water Science and Engineering》 EI CAS 2008年第2期25-32,共8页
关键词 TOPMODEL the Buliu river Basin topographic index the xin’anjiang model
下载PDF
Formation Mechanisms and Geomorphic Evolution of the Erlian Mudflow Fans, Eastern Guide Basin of the Upper Reaches of Yellow River 被引量:2
18
作者 ZHAO Wuji YIN Zhiqiang +1 位作者 XU Qiang QIN Xiaoguang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2016年第2期578-589,共12页
Several argillaceous platforms lie along the Yellow River(YR) of the eastern Guide Basin, northeastern Tibetan Plateau, and their compositions, formation processes, and geomorphic evolution remain debated. Using fie... Several argillaceous platforms lie along the Yellow River(YR) of the eastern Guide Basin, northeastern Tibetan Plateau, and their compositions, formation processes, and geomorphic evolution remain debated. Using field survey data, sample testing, and high-resolution remote sensing images, the evolution of the Erlian mudflow fans are analyzed. The data show significant differences between fans on either side of the YR. On the right bank, fans are dilute debris flows consisting of sand and gravel. On the left bank, fans are viscosity mudflows consisting of red clay. The composition and formation processes of the left bank platforms indicate a rainfall-induced pluvial landscape. Fan evolution can be divided into two stages: early-stage fans pre-date 16 ka B.P., and formed during the last deglaciation; late-stage fans post-date 8 ka B.P.. Both stages were induced by climate change. The data indicate that during the Last Glacial Maximum, the northeastern Tibetan Plateau experienced a cold and humid climate characterized by high rainfall. From 16–8 ka, the YR cut through the Erlian early mudflow fan, resulting in extensive erosion. Since 8 ka, the river channel has migrated south by at least 1.25 km, and late stage mudflow fan formation has occurred. 展开更多
关键词 the upper reaches of Yellow river Guide Basin mud-flow fan forming mechanism geomorphic evolution
下载PDF
Ecological Footprint and Ecological Security Evaluation in the Upper Min River Basin 被引量:2
19
作者 TU Jian-jun 1, 2 1. School of Resources and Environment Science, Southwest China Normal University, Chongqing 400715, China 2. Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China 《Wuhan University Journal of Natural Sciences》 EI CAS 2005年第4期641-646,共6页
On the basis of the ecological footprint (EF) model, this paper studied theecological security in the Upper Min River Basin ecosystem. The result shows that with 2. 038 2 hm^2per capita ecological capacity (0. 422 2 h... On the basis of the ecological footprint (EF) model, this paper studied theecological security in the Upper Min River Basin ecosystem. The result shows that with 2. 038 2 hm^2per capita ecological capacity (0. 422 2 hm^2 higher than per capita EF) ,and 165 825 hm^2 ecologysurplus , the ecosystem in Upper Min River is generally secure at present. But the arable land isoverweighed and omens an eco-security crisis. Meanwhile, problems such as low forest coverage rate,severe loss of water and soil,enlargement of arid-valley area, frequent occurrence of mountainhazards and degradation of pastures have been major threats to the eco-security of this region. Thecalculation result of ten-thousand-yuan ( RMB) GDP shows that the use of natural resources isextensive, and there will be a rapid increase tendency of EF in the future. In order to maintain thepresent eco-security, the ways of use natural resources must be improved in the Upper Min RiverBasin. 展开更多
关键词 ecological security ecological footprint ecological capacity quantitativeevaluation the upper Min river Basin
下载PDF
Farm Production Growth in the Upper and Middle Parts of the Yellow River Basin,China,During 1980-1999 被引量:2
20
作者 LI Xiang-lian LUO Yu-zhou +2 位作者 GAO Qiong DONG Suo-cheng YANG Xiu-sheng 《Agricultural Sciences in China》 CAS CSCD 2008年第3期344-355,共12页
The impact of inputs on farm production growth was evaluated by analyzing the economic data of the upper and middle parts of the Yellow River basin, China for the period of 1980-1999. Descriptive statistics were emplo... The impact of inputs on farm production growth was evaluated by analyzing the economic data of the upper and middle parts of the Yellow River basin, China for the period of 1980-1999. Descriptive statistics were employed to characterize the temporal trends and spatial patterns in farm production and five pertinent inputs of cultivated cropland, irrigation ratio, agricultural labor, machinery power and chemical fertilizer. Stochastic frontier production function was applied to quantify the dependence of the farm production on these inputs. The growth of farm production was decomposed to reflect the contributions by input growths and change in total factor productivity.. The change in total factor productivity was further decomposed into the changes in technology and in technical efficiency. The gross value of farm production in the region of study increased by 1.6 fold during 1980-1999. Among the five selected farm inputs, machinery power and chemical fertilizer increased by 1.8 and 2.8 fold, respectively. The increases in cultivated cropland, irrigated cropland, and agricultural labor were all less than 0.16 fold. The growth in the farm production was primarily contributed by the increase in the total factor productivity during 1980-1985, and by input growths after 1985. More than 80% of the contributions by input growths were attributed to the increased application of fertilizer and machinery. In the change of total factor productivity, the technology change dominated over the technical efficiency change in the study period except in the period of 1985-1990, implying that institution and investment played important roles in farm production growth. There was a decreasing trend in the technical efficiency in the region of study, indicating a potential to increase farm production by improving the technical efficiency in farm activities. Given the limited natural resources in the basin, the results of this study suggested that, for a sustainable growth of farm production in the area, efforts should be directed to technology progress and improvement in technical efficiency in the use of available resources. 展开更多
关键词 farm production stochastic frontier production function total factor productivity upper and middle parts of the Yellow river basin
下载PDF
上一页 1 2 142 下一页 到第
使用帮助 返回顶部