期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Upper Bound Solutions for Uplift Ultimate Bearing Capacity of Suction Caisson Foundation 被引量:1
1
作者 DAI Guo-liang ZHU Wen-bo +2 位作者 ZHAI Qian GONG Wei-ming ZHAO Xue-liang 《China Ocean Engineering》 SCIE EI CSCD 2019年第6期685-693,共9页
Suction caisson foundation derives most of their uplift resistance from passive suction developed during the pullout movement. It was observed that the passive suction generated in soil at the bottom of the caisson an... Suction caisson foundation derives most of their uplift resistance from passive suction developed during the pullout movement. It was observed that the passive suction generated in soil at the bottom of the caisson and the failure mode of suction caisson foundation subjecting pullout loading behaves as a reverse compression failure mechanism.The upper bound theorems have been proved to be a powerful method to find the critical failure mechanism and critical load associated with foundations, buried caissons and other geotechnical structures. However, limited attempts have been reported to estimate the uplift bearing capacity of the suction caisson foundation using the upper bound solution. In this paper, both reverse failure mechanisms from Prandtl and Hill were adopted as the failure mechanisms for the computation of the uplift bearing capacity of the suction caisson. New equations were proposed based on both failure mechanisms to estimate the pullout capacity of the suction caisson. The proposed equations were verified by the test results and experimental data from published literature. And the two solutions agree reasonably well with the other test results. It can be proved that both failure mechanisms are reasonably and more consistent with the actual force condition. 展开更多
关键词 suction caisson foundation bearing capacity upper bound solution failure mechanism
下载PDF
Face stability analysis of circular tunnels in layered rock masses using the upper bound theorem 被引量:2
2
作者 Jianhong Man Mingliang Zhou +2 位作者 Dongming Zhang Hongwei Huang Jiayao Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第6期1836-1871,共36页
An analysis of tunnel face stability generally assumes a single homogeneous rock mass.However,most rock tunnel projects are excavated in stratified rock masses.This paper presents a two-dimensional(2D)analytical model... An analysis of tunnel face stability generally assumes a single homogeneous rock mass.However,most rock tunnel projects are excavated in stratified rock masses.This paper presents a two-dimensional(2D)analytical model for estimating the face stability of a rock tunnel in the presence of rock mass stratification.The model uses the kinematical limit analysis approach combined with the block calculation technique.A virtual support force is applied to the tunnel face,and then solved using an optimization method based on the upper limit theorem of limit analysis and the nonlinear Hoek-Brown yield criterion.Several design charts are provided to analyze the effects of rock layer thickness on tunnel face stability,tunnel diameter,the arrangement sequence of weak and strong rock layers,and the variation in rock layer parameters at different positions.The results indicate that the thickness of the rock layer,tunnel diameter,and arrangement sequence of weak and strong rock layers significantly affect the tunnel face stability.Variations in the parameters of the lower layer of the tunnel face have a greater effect on tunnel stability than those of the upper layer. 展开更多
关键词 Face stability Rock tunnel Layered rock masses upper bound solution Hoek—Brown criterion
下载PDF
Undrained Stability Analysis of Three-Dimensional Rectangular Trapdoor in Clay 被引量:1
3
作者 尹小军 谢骏 《Journal of Donghua University(English Edition)》 EI CAS 2020年第4期334-339,共6页
A new collapse model of the trapdoors,three-dimensional rectangular trapdoor(3DRT),is presented for ground surface collapse.Undrained stability of 3DRT is examined with the upper bound method of plasticity limit analy... A new collapse model of the trapdoors,three-dimensional rectangular trapdoor(3DRT),is presented for ground surface collapse.Undrained stability of 3DRT is examined with the upper bound method of plasticity limit analysis theory.The soil where the trapdoors are located is assumed to be a perfectly plastic model with a Tresca yield criterion.Block analysis technique is employed to investigate the collapse of 3DRT.The model is divided into five different block types and added up to ten rigid blocks.According to the law of conservation of energy,the critical stability ratios of 3DRT are obtained through a search proceeding.The results of upper bound solution for 3DRT are given,and three trapdoor models with depth various are discussed during the application in the stability analysis of square trapdoors.The critical stability ratios can be used in the design of underground excavation and support force. 展开更多
关键词 three-dimensional rectangular trapdoor upper bound solution stability ratio rigid block block analysis technique
下载PDF
Analysis of Penetration Depth of Pipeline on Cohesive Soil Seabed
4
作者 ZHANG Qi-yi ZHANG Yuan +1 位作者 YAN Yun-qiang WU Shao-xuan 《China Ocean Engineering》 SCIE EI CSCD 2019年第6期739-745,共7页
This paper conducts laboratory tests to investigate detailedly the soil deformation law around the pipeline and its penetration depth under self-gravity. The seabed model is prepared by consolidating saturated soil us... This paper conducts laboratory tests to investigate detailedly the soil deformation law around the pipeline and its penetration depth under self-gravity. The seabed model is prepared by consolidating saturated soil using vacuum pressure technology, and the pipeline models are specifically designed to possess different radii. Based on the experimental results and digital images, the soil deformation process is analyzed and summarized, a kinematic admissible velocity field is given and an upper bound solution of pipeline penetration depth and soil reaction force is derived and proposed in this paper. In order to verify the accuracy of the upper bound solution deduced in this paper,a comparison is made among some published results and the solution suggested in this paper, the comparison results confirm that the upper bound solution and the soil failure mode are reasonable. Finally two empirical formulas are given in this paper to estimate the soil reaction force of seabed and the penetration depth of pipeline. The empirical formulas are in agreement with the upper bound solution derived in this paper, and the conclusion of this paper could provide some theoretical reference for the further study of the interaction between the pipeline and the soil. 展开更多
关键词 upper bound solution kinematic admissible velocity field soil reaction force penetration depth
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部