<b><span style="font-family:Verdana;">Background</span></b><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="f...<b><span style="font-family:Verdana;">Background</span></b><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><b><span style="font-family:Verdana;">: </span></b></span></span></span></span><span><span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">Active rehabilitation of the paralyzed limb is necessary for functional recovery from upper limb paralysis after stroke. In particular, the </span><span style="font-family:Verdana;">amount of training is very important, and robot rehabilitation is useful. Howev</span><span style="font-family:Verdana;">er, most conventional robots are expensive, large, and stationary. We have d</span><span style="font-family:Verdana;">eveloped Rehabili-Mouse, a new tabletop rehabilitation robot that is compact and portable. The purpose of this study was to conduct paralyzed upper limb training for a patient after stroke using Rehabili-Mouse and to examine its effect.</span></span></span></span></span></span><span><span><span><span><span style="font-family:;" "=""> </span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><b><span style="font-family:Verdana;">Case</span></b></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><b><span style="font-family:Verdana;">: </span></b></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">The patient was a 44-year-old man who had left-sided paresis after a right cerebral infarction, 3 months after onset. The training was carried out between February 2021 and March 2021 at Oyu Rehabilitation Hot</span></span></span></span></span><span><span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">spring Hospital. The training was 20 minutes of Rehabili-Mouse in addition to 40 minutes of usual occupational therapy and performed five times a week </span><span style="font-family:Verdana;">for four weeks. Upper limb functions were evaluated before and after the t</span><span style="font-family:Verdana;">raining, and two questionnaires of patient satisfaction with the device and the training were administered after the completion of the training. Upper limb function improved. The patient’s satisfaction with the device was poor, but his satisfaction with the training was good.</span></span></span></span></span></span><span><span><span><span><span style="font-family:;" "=""> </span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><b><span style="font-family:Verdana;">Discussion</span></b></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><b><span style="font-family:Verdana;">: </span></b></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Training for the paralyzed upper limb after stroke using Rehabili-Mouse improved upper limb function and satisfied the trained patient. We plan to increase the number of cases and conduct further studies.</span></span></span></span></span>展开更多
目的:本研究探讨上肢机器人分离运动训练改善脑卒中患者上肢运动功能的疗效,并通过分析其经颅磁刺激运动诱发电位(transcranial magnetic stimulation motor-evoked potential,MEP),进一步探讨其相关机制。方法:招募符合条件的脑卒中患...目的:本研究探讨上肢机器人分离运动训练改善脑卒中患者上肢运动功能的疗效,并通过分析其经颅磁刺激运动诱发电位(transcranial magnetic stimulation motor-evoked potential,MEP),进一步探讨其相关机制。方法:招募符合条件的脑卒中患者作为研究对象并随机分为试验组(n=21)和对照组(n=23),试验组进行固定轨迹(肘关节屈曲伸直、肩关节内收外展的分离运动)的上肢机器人训练,对照组进行随意运动轨迹(够取物品的复合动作)的上肢机器人训练。两组的机器人训练均1次/天,20min/次,5次/周,连续3周;对两组患者分别进行Fugl-Meyer上肢运动功能评分(Fugl-Meyer assessment of upper extremity,FMA-UE)和改良Barthel指数(modified Barthel index,MBI)的评定。检测两组患者治疗前后MEP的潜伏期以及中枢运动传导时间(central motor conduction time,CMCT)。结果:治疗3周后试验组患者的FMA-UE、MBI评分及MEP与治疗前比较均有改善(P<0.05),对照组患者的FMAUE、MBI评分、MEP与治疗前比无明显差异(P>0.05);治疗3周后组间比较,两组患者的FMA-UE、MBI评分及MEP无明显差异(P>0.05)。结论:上肢机器人的分离运动训练能改善脑卒中患者上肢运动功能,提高脑卒中患者日常生活自理能力,这可能与增强了脑卒中患者的脑功能重塑有关。展开更多
Upper limb exoskeletal rehabilitation robots are required to assist patients' arms to perform activities of daily living according to their motion intentions. In this paper, we address two questions: how to design a...Upper limb exoskeletal rehabilitation robots are required to assist patients' arms to perform activities of daily living according to their motion intentions. In this paper, we address two questions: how to design an exoskeletal robot which can mechanically reconstruct functional movements using only a few actuators and how to establish wrench-based assistive control. We first show that the mechanism replicating the synergic feature of the human upper limb can be designed in a recursive manner, meaning that the entire robot can be constructed from two basic mechanical units. Next, we illustrate that the assistive control for the synergetic exoskeletal robot can be transformed into an optimization problem and a Riemannian metric is proposed to generate anthropomorphic reaching movements according to contact forces and torques. Finally, experiments are carried out to verify the functionality of the proposed theory.展开更多
文摘<b><span style="font-family:Verdana;">Background</span></b><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><b><span style="font-family:Verdana;">: </span></b></span></span></span></span><span><span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">Active rehabilitation of the paralyzed limb is necessary for functional recovery from upper limb paralysis after stroke. In particular, the </span><span style="font-family:Verdana;">amount of training is very important, and robot rehabilitation is useful. Howev</span><span style="font-family:Verdana;">er, most conventional robots are expensive, large, and stationary. We have d</span><span style="font-family:Verdana;">eveloped Rehabili-Mouse, a new tabletop rehabilitation robot that is compact and portable. The purpose of this study was to conduct paralyzed upper limb training for a patient after stroke using Rehabili-Mouse and to examine its effect.</span></span></span></span></span></span><span><span><span><span><span style="font-family:;" "=""> </span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><b><span style="font-family:Verdana;">Case</span></b></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><b><span style="font-family:Verdana;">: </span></b></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">The patient was a 44-year-old man who had left-sided paresis after a right cerebral infarction, 3 months after onset. The training was carried out between February 2021 and March 2021 at Oyu Rehabilitation Hot</span></span></span></span></span><span><span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">spring Hospital. The training was 20 minutes of Rehabili-Mouse in addition to 40 minutes of usual occupational therapy and performed five times a week </span><span style="font-family:Verdana;">for four weeks. Upper limb functions were evaluated before and after the t</span><span style="font-family:Verdana;">raining, and two questionnaires of patient satisfaction with the device and the training were administered after the completion of the training. Upper limb function improved. The patient’s satisfaction with the device was poor, but his satisfaction with the training was good.</span></span></span></span></span></span><span><span><span><span><span style="font-family:;" "=""> </span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><b><span style="font-family:Verdana;">Discussion</span></b></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><b><span style="font-family:Verdana;">: </span></b></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Training for the paralyzed upper limb after stroke using Rehabili-Mouse improved upper limb function and satisfied the trained patient. We plan to increase the number of cases and conduct further studies.</span></span></span></span></span>
文摘目的:本研究探讨上肢机器人分离运动训练改善脑卒中患者上肢运动功能的疗效,并通过分析其经颅磁刺激运动诱发电位(transcranial magnetic stimulation motor-evoked potential,MEP),进一步探讨其相关机制。方法:招募符合条件的脑卒中患者作为研究对象并随机分为试验组(n=21)和对照组(n=23),试验组进行固定轨迹(肘关节屈曲伸直、肩关节内收外展的分离运动)的上肢机器人训练,对照组进行随意运动轨迹(够取物品的复合动作)的上肢机器人训练。两组的机器人训练均1次/天,20min/次,5次/周,连续3周;对两组患者分别进行Fugl-Meyer上肢运动功能评分(Fugl-Meyer assessment of upper extremity,FMA-UE)和改良Barthel指数(modified Barthel index,MBI)的评定。检测两组患者治疗前后MEP的潜伏期以及中枢运动传导时间(central motor conduction time,CMCT)。结果:治疗3周后试验组患者的FMA-UE、MBI评分及MEP与治疗前比较均有改善(P<0.05),对照组患者的FMAUE、MBI评分、MEP与治疗前比无明显差异(P>0.05);治疗3周后组间比较,两组患者的FMA-UE、MBI评分及MEP无明显差异(P>0.05)。结论:上肢机器人的分离运动训练能改善脑卒中患者上肢运动功能,提高脑卒中患者日常生活自理能力,这可能与增强了脑卒中患者的脑功能重塑有关。
基金Acknowledgment This work was partially supported by the National Natural Science Foundation of China (Grant Nos. 91648203 and 51335004), the International Science & Technology Cooperation Program of China (Grant No. 2016YFE0113600), and the Science Foundation for Innovative Group of Hubei Province (Grant No. 2015CFA004). The authors would like to thank Ting Wang, Xiaowei Cheng, and Xuan Wu for their contributions to the development of the experimental platform.
文摘Upper limb exoskeletal rehabilitation robots are required to assist patients' arms to perform activities of daily living according to their motion intentions. In this paper, we address two questions: how to design an exoskeletal robot which can mechanically reconstruct functional movements using only a few actuators and how to establish wrench-based assistive control. We first show that the mechanism replicating the synergic feature of the human upper limb can be designed in a recursive manner, meaning that the entire robot can be constructed from two basic mechanical units. Next, we illustrate that the assistive control for the synergetic exoskeletal robot can be transformed into an optimization problem and a Riemannian metric is proposed to generate anthropomorphic reaching movements according to contact forces and torques. Finally, experiments are carried out to verify the functionality of the proposed theory.