Phytoremediation has long been recognized as a cost-effective method for the removal of polycyclic aromatic hydrocarbons (PAHs) from soil. A study was conducted to investigate the uptake and accumulation of PAHs in ...Phytoremediation has long been recognized as a cost-effective method for the removal of polycyclic aromatic hydrocarbons (PAHs) from soil. A study was conducted to investigate the uptake and accumulation of PAHs in root and shoot of Lolium perenne L. Pot experiments were conducted with series of concentrations of 3.31-378.37 mg/kg for phenanthrene and those of 4.22-365.38 mg/kg for pyrene in a greenhouse. The results showed that both ryegrass roots and shoots did take up PAHs from spiked soils, and generally increased with increasing concentrations of PAH in soil. Bioconcentration factors(BCFs) of phenanthrene by shoots and roots were 0.24- 4.25 and 0.17-2.12 for the same treatment. BCFs of pyrene by shoots were 0.20-1.5, except for 4.06 in 4.32 mg/kg treatment, much lower than BCFs of pyrene by roots (0.58-2.28). BCFs of phenanthrene and pyrene tended to decrease with increasing concentrations of phenanthrene and pyrene in soil. Direct uptake and accumulation of these compounds by Lolium perenne L. was very low compared with the other loss pathways, which meant that plant-promoted microbial biodegradation might be the main contribution to plant-enhanced removal of phenanthrene and pyrene in soil. However, the presence of Lolium perenne L. significantly enhanced the removal of phenanthrene and pyrene in spiked soil. At the end of 60 d experiment, the extractable concentrations of phenanthrene and pyrene were lower in planted soil than in non-planted soil, about 83.24%-91.98% of phenanthrene and 68.53%-84.10% of pyrene were removed from soils, respectively. The results indicated that the removal of PAHs in contaminated soils was a feasible approach by using Lolium perenne L.展开更多
In order to understand the mechanisms on the variation between rice cultivars in Cd uptake and accumulation, two pot soil experiments were conducted with typical rice cultivars that varied greatly in soil Cd uptake. T...In order to understand the mechanisms on the variation between rice cultivars in Cd uptake and accumulation, two pot soil experiments were conducted with typical rice cultivars that varied greatly in soil Cd uptake. The experiments with six rice cultivars showed that the root oxidation abilities of rice differed with rice cultivars and also with types of the cultivars, the cultivars with indica consanguinity were significantly higher than the cultivars with japonica consanguinity. Root oxidation abilities of the rice cultivars correlated positively and significantly (P〈0.01) with their Cd concentrations and Cd quantity accumulations in rice plants. The experiments with two rice cultivars showed that significant differences also existed between the two cultivars in pot soil redox potentials, which of Shan you 63 (higher soil Cd accumulator) were significantly higher than that of Wu yun jing 7 (lower soil Cd accumulator) under different soil Cd levels, but the degrees of the differences varied with soil Cd levels. The differences were larger under soil Cd treatments than the control. The results indicate that root oxidation ability, especially in Cd contaminated soil, is one of the main mechanisms which dominate Cd uptake and accumulation by rice plant.展开更多
Plant uptake of contaminants provides vital information for the reclamation of large area of contaminated soils.A field experiment was conducted using four plant species growing in four kinds of oil contaminated soils...Plant uptake of contaminants provides vital information for the reclamation of large area of contaminated soils.A field experiment was conducted using four plant species growing in four kinds of oil contaminated soils to estimate the uptake of organic and inorganic contaminants by plants from the oil contaminated soils.The experiment showed that the concentrations of some selected elements,such as B,Co and Ni in plants growing in the oil contaminated soils were significantly higher than those in plants growing in the uncontaminated control soil.The accumulation of metals in plants increased with plant biomass;however,the removal of metals by plants from the oil contaminated soils was not practical.展开更多
Phytoremediation has been used as an emerging technology for remediation of soil contamination with polycyclic aromatic hydrocarbons(PAHs),ubiquitous persistent environmental pollutants derived from natural and anthro...Phytoremediation has been used as an emerging technology for remediation of soil contamination with polycyclic aromatic hydrocarbons(PAHs),ubiquitous persistent environmental pollutants derived from natural and anthropogenic processes,in the last decade.In this study,a pot experiment was conducted to investigate the potential of phytoremediation of pyrene from spiked soils planted with white clover(Trifolium repens)in the greenhouse with a series of pyrene concentrations ranging from 4.22 to 365.38 mg kg-1.The results showed that growth of white clover on pyrenecontaminated soils was not affected.The removal of pyrene from the spiked soils planted with white clover was obviously higher than that from the unplanted soils.At the end of the experiment(60 d),the average removal ratio of pyrene in the spiked soils with white clover was 77%,which was 31%and 57%higher than those of the controls with or without micobes, respectively.Both roots and shoots of white clover took up pyrene from the spiked soils and pyrene uptake increased with the soil pyrene concentration.However,the plant-enhanced dissipation of soil pyrene may be the result of plant-promoted microbial degradation and direct uptake and accumulation of pyrene by white clover were only a small part of the pyrene dissipation.Bioconcentration factors of pyrene(BCFs,ratio of pyrene,on a dry weight basis,in the plant to that in the soil)tended to decrease with increase in the residual soil pyrene concentration.Therefore,removal of pyrene in the contaminated soils was feasible using white clove.展开更多
基金The Institute of Soil Science ,CAS(No.035116) the Education Bureau of Zhejiang Province Program(No.20040187) andthe National Natural ScienceFoundation of China(No.40271060)
文摘Phytoremediation has long been recognized as a cost-effective method for the removal of polycyclic aromatic hydrocarbons (PAHs) from soil. A study was conducted to investigate the uptake and accumulation of PAHs in root and shoot of Lolium perenne L. Pot experiments were conducted with series of concentrations of 3.31-378.37 mg/kg for phenanthrene and those of 4.22-365.38 mg/kg for pyrene in a greenhouse. The results showed that both ryegrass roots and shoots did take up PAHs from spiked soils, and generally increased with increasing concentrations of PAH in soil. Bioconcentration factors(BCFs) of phenanthrene by shoots and roots were 0.24- 4.25 and 0.17-2.12 for the same treatment. BCFs of pyrene by shoots were 0.20-1.5, except for 4.06 in 4.32 mg/kg treatment, much lower than BCFs of pyrene by roots (0.58-2.28). BCFs of phenanthrene and pyrene tended to decrease with increasing concentrations of phenanthrene and pyrene in soil. Direct uptake and accumulation of these compounds by Lolium perenne L. was very low compared with the other loss pathways, which meant that plant-promoted microbial biodegradation might be the main contribution to plant-enhanced removal of phenanthrene and pyrene in soil. However, the presence of Lolium perenne L. significantly enhanced the removal of phenanthrene and pyrene in spiked soil. At the end of 60 d experiment, the extractable concentrations of phenanthrene and pyrene were lower in planted soil than in non-planted soil, about 83.24%-91.98% of phenanthrene and 68.53%-84.10% of pyrene were removed from soils, respectively. The results indicated that the removal of PAHs in contaminated soils was a feasible approach by using Lolium perenne L.
文摘In order to understand the mechanisms on the variation between rice cultivars in Cd uptake and accumulation, two pot soil experiments were conducted with typical rice cultivars that varied greatly in soil Cd uptake. The experiments with six rice cultivars showed that the root oxidation abilities of rice differed with rice cultivars and also with types of the cultivars, the cultivars with indica consanguinity were significantly higher than the cultivars with japonica consanguinity. Root oxidation abilities of the rice cultivars correlated positively and significantly (P〈0.01) with their Cd concentrations and Cd quantity accumulations in rice plants. The experiments with two rice cultivars showed that significant differences also existed between the two cultivars in pot soil redox potentials, which of Shan you 63 (higher soil Cd accumulator) were significantly higher than that of Wu yun jing 7 (lower soil Cd accumulator) under different soil Cd levels, but the degrees of the differences varied with soil Cd levels. The differences were larger under soil Cd treatments than the control. The results indicate that root oxidation ability, especially in Cd contaminated soil, is one of the main mechanisms which dominate Cd uptake and accumulation by rice plant.
文摘Plant uptake of contaminants provides vital information for the reclamation of large area of contaminated soils.A field experiment was conducted using four plant species growing in four kinds of oil contaminated soils to estimate the uptake of organic and inorganic contaminants by plants from the oil contaminated soils.The experiment showed that the concentrations of some selected elements,such as B,Co and Ni in plants growing in the oil contaminated soils were significantly higher than those in plants growing in the uncontaminated control soil.The accumulation of metals in plants increased with plant biomass;however,the removal of metals by plants from the oil contaminated soils was not practical.
基金Project supported by the National Natural Science Foundation of China(Nos.40432004 and 20677015)the Postdoctoral Science Foundation of China(No.20070420094)+2 种基金the Postdoctoral Science Foundation of Shanghai Municipality,China(No.08R214116)the Science and Technology Commission of Shanghai Municipality,China(No.0752nm025)theNational High-Tech Research and Development Program(No.2007AA06Z331)
文摘Phytoremediation has been used as an emerging technology for remediation of soil contamination with polycyclic aromatic hydrocarbons(PAHs),ubiquitous persistent environmental pollutants derived from natural and anthropogenic processes,in the last decade.In this study,a pot experiment was conducted to investigate the potential of phytoremediation of pyrene from spiked soils planted with white clover(Trifolium repens)in the greenhouse with a series of pyrene concentrations ranging from 4.22 to 365.38 mg kg-1.The results showed that growth of white clover on pyrenecontaminated soils was not affected.The removal of pyrene from the spiked soils planted with white clover was obviously higher than that from the unplanted soils.At the end of the experiment(60 d),the average removal ratio of pyrene in the spiked soils with white clover was 77%,which was 31%and 57%higher than those of the controls with or without micobes, respectively.Both roots and shoots of white clover took up pyrene from the spiked soils and pyrene uptake increased with the soil pyrene concentration.However,the plant-enhanced dissipation of soil pyrene may be the result of plant-promoted microbial degradation and direct uptake and accumulation of pyrene by white clover were only a small part of the pyrene dissipation.Bioconcentration factors of pyrene(BCFs,ratio of pyrene,on a dry weight basis,in the plant to that in the soil)tended to decrease with increase in the residual soil pyrene concentration.Therefore,removal of pyrene in the contaminated soils was feasible using white clove.