期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Apatite Fission Track Thermochronology of Granite from the Xiazhuang Uranium Ore Field,South China:Implications for Exhumation History and Ore Preservation
1
作者 SUN Yue CHEN Zhengle +4 位作者 PAN Jiayong HUO Hailong LI Haidong SUN Junjie XU Guangchun 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第2期430-440,共11页
Xiazhuang uranium ore field,located in the southern part of the Nanling Metallogenic Belt,is considered one of the largest granite-related U regions in South China.In this paper,we contribute new apatite fission track... Xiazhuang uranium ore field,located in the southern part of the Nanling Metallogenic Belt,is considered one of the largest granite-related U regions in South China.In this paper,we contribute new apatite fission track data and thermal history modeling to constrain the exhumation history and evaluate preservation potential of the Xiazhuang Uranium ore field.Nine Triassic outcrop granite samples collected from different locations of Xiazhuang Uranium ore field yield AFT ages ranging from 43 to 24 Ma with similar mean confined fission track lengths ranging from 11.8±2.0 to 12.9±1.9μm and Dpar values between 1.01 and 1.51μm.The robustness time-temperature reconstructions of samples from the hanging wall of Huangpi fault show that the Xiazhuang Uranium ore field experienced a time of monotonous and slow cooling starting from middle Paleocene to middle Miocene(~60-10 Ma),followed by relatively rapid exhumation in the late Miocene(~10-5 Ma)and nearly thermal stability in the Pliocene-Quaternary(~5-0 Ma).The amount of exhumation after U mineralization since the Middle Paleogene was estimated as~4.3±1.8 km according to the integrated thermal history model.Previous studies indicate that the ore-forming ages of U deposits in the Xiazhuang ore field are mainly before Middle Paleocene and the mineralization depths are more than 4.4±1.2 km.Therefore,the exhumation history since middle Paleocene plays important roles in the preservation of the Xiazhuang Uranium ore field. 展开更多
关键词 apatite fission track exhumation history ore preservation Xiazhuang uranium ore field South China
下载PDF
Constraints on granite-related uranium mineralization in the Sanjiu uranium ore field,SE China provided by pyrite mineralogy,major and trace elements,S-He-Ar isotopes 被引量:2
2
作者 Xu Chen Xiaodong Liu +1 位作者 Jinning Qin Biguang Jiang 《Acta Geochimica》 EI CAS CSCD 2020年第4期471-486,共16页
The Sanjiu uranium ore field,located in the central of Zhuguangshan granitic batholith,is a newly discovered granite-related uranium ore field in South China.The main sulfide in the ore field is pyrite,which is closel... The Sanjiu uranium ore field,located in the central of Zhuguangshan granitic batholith,is a newly discovered granite-related uranium ore field in South China.The main sulfide in the ore field is pyrite,which is closely related to uranium mineralization.The textures major and trace elements,S-He-Ar isotopes compositions of pyrites in ores of different grade were observed and/or analyzed by optical microscope,scanning electron microscope,electron microprobe,laser ablation inductively coupled plasma mass spectrometry,and noble gas mass spectrometer(Helix-SFT).It is observed that these U-related pyrites are generally euhedral-subhedral with dissolution textures,anhedral variety with colloform texture veinlet and fine particles,and the color of the associated minerals is mostly dark hue,such as purple-black fluorite dark-red hematite,and dark-green chlorite,etc.The analytical results show that the average compositions of major elements in pyrite are FeS1.944.Pyrites are characterized by S-deficiency,low content of Co and Th,and Co/Ni>1which indicate that these ores are of low-temperature hydrothermal origin.We found that the higher the grade of ore,the more deficient in S,the more obvious negative δ^34S,and the higher REE content(close to U-rich granitic pluton)of pyrite.The S-He-Ar isotopic compositions of various varieties of pyrites indicate that the ore-forming fluids mainly come from crust-derived fluids and mixed with mantle-derived fluids. 展开更多
关键词 PYRITE In-situ analysis Noble gas isotope Granite-related uranium deposit The Sanjiu uranium ore field
下载PDF
A Novel Approach in Hydrogeochemical Exploration for Uranium Mineralization:an Example from West Central Sinai,Egypt 被引量:1
3
作者 Ahmed E.EL-RAYES Mohamed O.ARNOUS 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2015年第6期1895-1913,共19页
Groundwater in contact with ore deposits may acquire a chemical composition that could be used as a guide for exploration. Eight well-water samples are collected from a known uraniummineralized area near Abu Zenima, w... Groundwater in contact with ore deposits may acquire a chemical composition that could be used as a guide for exploration. Eight well-water samples are collected from a known uraniummineralized area near Abu Zenima, west central Sinai to examine the applicability of using the hydrogeochemical technique in the search for uranium mineralization in similar arid areas. The analytical chemical data of the ground water is compared with ground radiometric measurements. The obtained results indicate that groundwater affected by uranium mineralization has a specific relativity of major anions expressed essentially as SO_4〉Cl〉HCO_3 and to a lesser extent as Cl〉SO_4〉HCO_3, associated as a rule with low magnesium content. This association constitutes a signature of uranium mineralization on the composition of groundwater in west central Sinai and could be used as an important exploration guide in the search for uranium deposits in similar areas. Anomalies in Ni, Fe, Zn and Cr and other pathfinder elements in groundwater can furnish geochemical guides to uranium ores. The immobile trace element anomalies, including Zn, Ni and Fe are strongly distributed near the orebody; whereas the relatively mobile trace elements, including Co, U, V and Cr, constitute the dispersion haloes away from the orebody. A new hydrogeochemical discrimination diagram is constructed to be used as a quick and cost effective exploration tool in the search for uranium occurrences in environmentally similar arid areas. Based on the obtained results, a new site for uranium occurrence, west of W. Baba, is delineated and recommended for future detailed geological and geochemical surveying. 展开更多
关键词 Hydrogeochemical exploration uranium ores geospatial mapping graphical explorationtool remote sensing SINAI
下载PDF
Mill tailings based composites as paste backfill in mines of U-bearing dolomitic limestone ore 被引量:1
4
作者 Sandeep Panchal Debasis Deb T.Sreenivas 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2018年第2期310-322,共13页
This paper elaborates on the development of paste backfill using mill tailings generated during the processing of a uranium ore deposit hosted in dolomitic limestone. The tailings have been characterized in terms of t... This paper elaborates on the development of paste backfill using mill tailings generated during the processing of a uranium ore deposit hosted in dolomitic limestone. The tailings have been characterized in terms of the physical, chemical and mineralogical properties. Time-dependent rheological behaviors and geotechnical properties of cemented paste backfill(CPB) are also determined. The studies show that the mill tailing has the potential to form paste and the CPB has adequate strength to provide support to mine pillars, roofs, and walls. 展开更多
关键词 Mining engineering uranium ore deposit TAILINGS Cemented paste backfill(CPB) Rheology Compressive strength
下载PDF
Mass Transfer during Hematitization and Implications for Uranium Mineralization in the Zoujiashan Deposit,Xiangshan Volcanic Basin 被引量:1
5
作者 Teng Deng Guoxiang Chi +11 位作者 Xiongjie Zhang Zenghua Li Deru Xu Shengmiao Li Pengfei Du Pei Shang Shaohao Zou Wanpeng Zhou Ke Xu Hai Yan MaWen Zhengpeng Ding 《Journal of Earth Science》 SCIE CAS CSCD 2022年第2期422-434,共13页
The Zoujiashan uranium deposit in the Xiangshan ore field is the largest volcanic-related uranium deposit in China.Hematite-and fluorite-type ores are the predominant mineralization styles.Hematitization in the Xiangs... The Zoujiashan uranium deposit in the Xiangshan ore field is the largest volcanic-related uranium deposit in China.Hematite-and fluorite-type ores are the predominant mineralization styles.Hematitization in the Xiangshan ore field is closely associated with uranium mineralization,mainly occurring as hematitized rocks enclosing fluorite-type vein ores developed in pre-ore illitized porphyritic lava.Detailed petrographic and mass balance calculation studies were conducted to evaluate the mechanisms for uranium precipitation and mass transfer during hematitization.Petrographic observations suggest that in the hematitized rocks,orthoclase is more altered than plagioclase,and quartz dissolution is common,whereas in the illitized rocks,pyrite commonly occurs within the altered biotite grains,and chlorite grains are locally found.Mass balance calculations indicate that Na2O and U were gained,K2O,Ca O and Si O2were lost,whereas Fe2O3-t remained more or less constant during hematitization.These observations suggest that the hydrothermal fluids were Na-and U-rich and Ca-K-poor,and the Fe2+used for hematitization was locally derived,most likely from biotite,pyrite and chlorite in the host rocks.The Fe2+is inferred to have played the role of reductant to precipitate uranium,and calculation indicates that oxidation of Fe2+provided by host rocks is sufficient to form ores of economic significance.Consequently,the hematite-type ore is interpreted to be generated by the reaction between oxidized ore fluids and reduced components in host rocks.The development of calcite and pyrite in the fluorite ores suggests that perhaps mixing between the U-rich fluid and another fluid carrying reduced sulfur and carbon may have also contributed to uranium mineralization,in addition to temperature and pressure drop associated with the veining. 展开更多
关键词 Xiangshan uranium ore field mass transfer uranium precipitation hematitization redox reaction ore deposit geology
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部