As an important goal of urban design research,the evaluation of urban spatial vitality has been widely concerned.Taking Shenzhen as an example,the urban built-up area of Shenzhen was identifi ed using improved DENsi-G...As an important goal of urban design research,the evaluation of urban spatial vitality has been widely concerned.Taking Shenzhen as an example,the urban built-up area of Shenzhen was identifi ed using improved DENsi-Graph analysis,from the perspective of quantifi cation of urban spatial morphological features.The accessibility of urban streets,degree of construction and architectural form,and degree of functional mixing were quantitatively analyzed through space syntax,space matrix and mixeduse index(MXI),and the spatial vitality of urban built-up area was evaluated.Research results demonstrated that the improved Densi-Graph analysis could better identify the built-up area of Shenzhen,and the overall classifi cation accuracy was 0.810.The analysis results of spatial vitality showed that the urban spatial vitality in Shenzhen urban built-up area was well created.The street accessibility of Shenzhen generally hindered the creation of urban vitality;the spatial matrix value in the north of Shenzhen urban built-up area was lower;and the MXI of most areas within the study area was above the medium.展开更多
Since the reform and opening-up program started in 1978,the level of urbanization has increased rapidly in China.Rapid urban expansion and restructuring have had significant impacts on the ecological environment espec...Since the reform and opening-up program started in 1978,the level of urbanization has increased rapidly in China.Rapid urban expansion and restructuring have had significant impacts on the ecological environment especially within built-up areas.In this study,ArcGIS 10,ENVI 4.5,and Visual FoxPro 6.0 were used to analyze the human impacts on vegetation in the built-up areas of 656Chinese cities from 1992 to 2010.Firstly,an existing algorithm was refined to extract the boundaries of the built-up areas based on the Defense Meteorological Satellite Program Operational Linescan System(DMSP_OLS)nighttime light data.This improved algorithm has the advantages of high accuracy and speed.Secondly,a mathematical model(Human impacts(HI))was constructed to measure the impacts of human factors on vegetation during rapid urbanization based on Advanced Very High Resolution Radiometer(AVHRR)Normalized Difference Vegetation Index(NDVI)and Moderate Resolution Imaging Spectroradiometer(MODIS)NDVI.HI values greater than zero indicate relatively beneficial effects while values less than zero indicate proportionally adverse effects.The results were analyzed from four aspects:the size of cities(metropolises,large cities,medium-sized cities,and small cities),large regions(the eastern,central,western,and northeastern China),administrative divisions of China(provinces,autonomous regions,and municipalities)and vegetation zones(humid and semi-humid forest zone,semi-arid steppe zone,and arid desert zone).Finally,we discussed how human factors impacted on vegetation changes in the built-up areas.We found that urban planning policies and developmental stages impacted on vegetation changes in the built-up areas.The negative human impacts followed an inverted′U′shape,first rising and then falling with increase of urban scales.China′s national policies,social and economic development affected vegetation changes in the built-up areas.The findings can provide a scientific basis for municipal planning departments,a decision-making reference for government,and scientific guidance for sustainable development in China.展开更多
Urban river riparian spaces and their natural systems are valuable to urban dwellers;but are increasingly affected and ruined by human activities and in particular, urbanization processes. In this research, land sat a...Urban river riparian spaces and their natural systems are valuable to urban dwellers;but are increasingly affected and ruined by human activities and in particular, urbanization processes. In this research, land sat and sentinel satellite imagery apt for change detection in vegetation cover, both landsat and sentinel imagery, covering the period between 1970 and 2021 in epochs of 1973, 1984, 1993, 2003, 2015 and 2021 years were used to establish the correlation between vegetation cover and built-up area along River Riara river reserve. The images were analysed to extract the built-up areas along the river reserve, including the buildings, and the rate of human settlements, which influenced vegetation cover. Normalized Difference Built-Up Index (NDBI) and Normalized Difference Vegetation Index (NDVI) were computed using the Short-Wave Infrared (SWIR) and the Near Infra-Red (NIR) bands to show the rate of change over the years. Results indicate NDVI values were high, compared to NDBI values along river Riara in the years 1973 and 1993 implying that there was more vegetation cover then. However, in the year 2021, the NDVI indicated the highest value at 0.88, with the complementary NDBI indicating the highest NDBI value at 0.47. This represents a significant increase in built-up areas since 2015 more than in previous epochs. Either, there was a significant increase in NDBI values, from 0.24 in 1993 to 0.47 in 2021. More so, the R-squared value at 0.80 informed 80% relationship between NDBI and NDVI values indicating a negative correlation.展开更多
The rapid expansion of urban areas due to rise in population and economic growth is increasing additional demand on natural resources thereby causing land-use changes especially in megacities. Therefore, serious probl...The rapid expansion of urban areas due to rise in population and economic growth is increasing additional demand on natural resources thereby causing land-use changes especially in megacities. Therefore, serious problems associated with rapid development such as additional infrastructure, informal settlements, environmental pollution, destruction of ecological structure and scarcity of natural resources has been studied carefully using remote sensing and GIS technologies for a rapidly grown megacity namely, Delhi. The present work evaluates the land use/land cover (LULC) changes and urban expansion in Mega city Delhi and highlights the major impact of rapid urbanization and population growth on the land cover changes which needs immediate attention. The results indicate that the city is expanding towards its peripheral region with the conversion of rural regions in to urban expansions. Built-up area of Delhi witnessed an overall increment from 540.7 km2 to 791.96 km2 or 16.86% of the total city area (1,490 km2 ) during the study period 1997 to 2008 which mainly came from agriculture land, waste land, scrub-land, sandy areas and water bodies. The increment in forest cover of 0.5 % is very small when considering the increment in built up category to 17%. Total area of waterbodies has reduced by 52.9% in a ten year period (58.26 km2 in 1997 to 27.43 km2 in 2008) with shallow waterbodies now having a dismal presence. LULC changes are studied with the urban growth parameters such as population, vehicles, gross state domestic product etc. The results lay emphasis on the concepts of urban planning to be applied such that more consideration is towards the preservation and management of natural land use classes which will increase the quality of life in an urban environment.展开更多
Urbanization is termed as physical transformation of landscapes that alter the natural regime of the environment of its surrounding resulting in further changes in macro as well as micro climate of the region [1]. Urb...Urbanization is termed as physical transformation of landscapes that alter the natural regime of the environment of its surrounding resulting in further changes in macro as well as micro climate of the region [1]. Urban areas are continually facing problems of water scarcity and urban flash floods. Recent news from IPCC report 2010, CIESIN’s Global Rural Urban Mapping Project [2] and World Water Vol. 7 2007, it is clear that urban land area has doubled and affected the hydrological cycle. The components of hydrological cycle affected are Infiltration, Runoff and Evaporation and the causing components are derived by studies as land use, land cover, water withdrawal and urban developments. Thus water availability, water recharge and water cycle are all destabilized in course or urban development. The paper is an attempt to correlate and identify the periodical changes in urban water cycle, during urbanization of Bhopal City, India, during last twenty years and above. The observations are based on GIS mapping of the study area from 1991 to 2009 using rational method of runoff and recharge calculations and statistical analysis of related built-up areas. Also change in natural course of drainages with the help of GIS imageries which have been detected during twenty years that help to observe the adaptation of natural system to urban course. Also the observations show an interesting relation which can be used for further research and sustainable development [3].展开更多
Designing “liveable” cities as climate change effects are felt all over the world has become a priority to city authorities as ways are sought to reduce rising temperatures in urban areas. Urban Heat Island (UHI) ef...Designing “liveable” cities as climate change effects are felt all over the world has become a priority to city authorities as ways are sought to reduce rising temperatures in urban areas. Urban Heat Island (UHI) effect occurs when there is a difference in temperature between rural and urban areas. In urban areas, impervious surfaces absorb heat during the day and release it at night, making urban areas warmer compared to rural areas which cool faster at night. This Urban Heat Island effect is particularly noticeable at night. Noticeable negative effects of Urban Heat Islands include health problems, air pollution, water shortages and higher energy requirements. The main objective of this research paper was to analyze the spatial and temporal relationship between Land Surface Temperature (LST) and Normalized Density Vegetation Index (NDVI) and Built-Up Density Index (BDI) in Upper-Hill, Nairobi Kenya. The changes in land cover would be represented by analyzing the two indices NDVI and BDI. Results showed the greatest increase in temperature within Upper-Hill of up to 3.96°C between the years 2015 and 2017. There was also an increase in impervious surfaces as indicated by NDVI and BDI within Upper-Hill and its surroundings. The linear regression results showed a negative correlation between LST and NDVI and a positive correlation with BDI, which is a better predictor of Land Surface Temperature than NDVI. Data sets were analyzed from Landsat imagery for the periods 1987, 2002, 2015 and 2017 to determine changes in land surface temperatures over a 30 year period and it’s relation to land cover changes using indices. Visual comparisons between Temperature differences between the years revealed that temperatures decreased around the urban areas. Minimum and maximum temperatures showed an increase of 1.6°C and 3.65°C respectively between 1987 and 2017. The comparisons between LST, NDVI and BDI show the results to be significantly different. The use of NDVI and BDI to study changes in land cover due to urbanization, reduces the time taken to manually classify moderate resolution satellite imagery.展开更多
The change of land use plays a major role in the developmental activity of a developing country. Due to rapid growth of urbanisation and dramatic increasing population, the fertile agricultural land has been converted...The change of land use plays a major role in the developmental activity of a developing country. Due to rapid growth of urbanisation and dramatic increasing population, the fertile agricultural land has been converted to built-up area with respect to the demand for housing requirement and to the need for basic infrastructure facilities. The quantum of open space and surface water bodies has also been encroached. There has been a rapid growth of population in Puducherry city from 3.48 million in 1991 to 5.44 million in 2011. Hence the conservation of natural resources becomes one of the major challenges especially in small and medium town. This study was conducted to assess the effect of change on land use in urban agglomeration area of Puducherry city for the duration period from 1997 to 2017. There has been an increase in population in Puducherry city mainly attributed to higher scale of migration from adjoining rural areas and medium town for better education, job opportunities and quality life. Hence, it has been strongly recommended for stringent Development Control Regulations to quantify the urban sprawl and manage the impact of urbanisation of land use/land cover in Puducherry city.展开更多
The rapid transformation of rural settlements into municipalities in Nepal has brought significant changes in land use,and urban expansion and growth patterns mostly through the conversion of agricultural land i...The rapid transformation of rural settlements into municipalities in Nepal has brought significant changes in land use,and urban expansion and growth patterns mostly through the conversion of agricultural land into the built-up area.The issue is studied taking a case of the rapidly growing town,Barahathawa Municipality of Tarai Region of Sarlahi District.After the declaration of the municipality,several new roads have been opened and upgraded;and the municipality is well-connected to the national transportation network.After promulgated the Constitution of Nepal 2015 and functioning the elected local body,the municipality budget has been increased significantly as a result of increasing municipal investment in socio-economic and physical infrastructure development and environmental protection which has attracted people,goods,and services creating the zone of influence on the municipality.One of the changes found in the municipality is the increasing built-up area and expansion of urban growth through the decreasing agricultural land.Urban growth has been observed taking place around the Barahathawa Bazaar and main roadsides.The built-up area in Barahathawa municipality has remarkably increased by 183percent with the decrease of shrub and agricultural land within 10 years.Implications of such spatial and temporal dynamics have been a core issue of urban planning in most of the newly declared municipalities in Nepal.展开更多
An improved methodology for the extraction and mapping of urban built-up areas at a global scale is presented in this study.The Moderate Resolution Imaging Spectroradiometer(MODIS)-based multispectral data were combin...An improved methodology for the extraction and mapping of urban built-up areas at a global scale is presented in this study.The Moderate Resolution Imaging Spectroradiometer(MODIS)-based multispectral data were combined with the Visible Infrared Imager Radiometer Suite(VIIRS)-based nighttime light(NTL)data for robust extraction and mapping of urban built-up areas.The MODIS-based newly proposed Urban Built-up Index(UBI)was combined with NTL data,and the resulting Enhanced UBI(EUBI)was used as a single master image for global extraction of urban built-up areas.Due to higher variation of the EUBI with respect to geographical regions,a region-specific threshold approach was used to extract urban built-up areas.This research provided 500-m-resolution global urban built-up map of year 2014.The resulted map was compared with three existing moderate-resolution global maps and one high-resolution map in the United States.The comparative analysis demonstrated finer details of the urban built-up cover estimated by the resultant map.展开更多
There is growing interest in using the urban landscape for stormwater management studies, where land patterns and processes can be important controls for the sustainability of urban development and planning. This pape...There is growing interest in using the urban landscape for stormwater management studies, where land patterns and processes can be important controls for the sustainability of urban development and planning. This paper proposes an original index of Major Hazard Oriented Level (MHOL) and investigates the structure distribution, driving factors, and controlling suggestions of urban-rural land growth in flood-prone areas in the Taihu Lake watershed, China. The MHOL of incremental urban-rural land increased from M 31.51 during the years 1985-1995 to M 38.37 during the years 1995-2010 (M for medium structure distribution, and the number for high-hazard value). The index shows that urban-rnraI land was distributed uniformly in flood hazard levels and tended to move rapidly to high-hazard areas, where 72.68% of incremental urban-rural land was aggregated maximally in new urban districts along the Huning traffic line and the Yangtze River. Thus, the current accelerating growth of new urban districts could account for the ampliative exposure to high-hazard areas. New districts are driven by the powerful link between land financial benefits and political achievements for local governments and the past unsustainable process of "single objective" oriented planning. The correlation categorical analysis of the current development intensity and carrying capacity of hydrological ecosystems for sub-basins was used to determine four types of development areas and provide decision makers with indications on the future watershed- scale subdivision of Major Function Oriented Zoning implemented by the Chinese government.展开更多
With the expansion of cities and the emergence of various urban problems,urban underground space has been developed as a solution.In China’s urban transition context,there is a need for the development of underground...With the expansion of cities and the emergence of various urban problems,urban underground space has been developed as a solution.In China’s urban transition context,there is a need for the development of underground space in urban built-up areas.In this casestudy of the central city of Nanjing,we used spatial analysis and statistical methods to characterize the underground space use of urban built-up areas from a dynamic spatiotemporal perspective.We first analyzed the relationship between the population distribution and the underground space use of the central city of Nanjing based on a Baidu heat map,which can reflect the real-time population distribution,and then,we explored the spatiotemporal characteristics and spatial structure of the underground space use in urban built-up areas.The analysis results provide a reference for planning to improve and optimize the layout of underground space in the central city of Nanjing and,more generally,for the stock-type planning of underground space in urban built-up areas.展开更多
Without a clear and unified definition of the urban built-up area, many city rankings by area are inconsistent, giving rise to confusion among the general public and even scholars. This paper summarizes various defini...Without a clear and unified definition of the urban built-up area, many city rankings by area are inconsistent, giving rise to confusion among the general public and even scholars. This paper summarizes various definitions of the urban built-up area and proposes three definition methods: all urban built-up areas in a municipal administrative area, concentrated contiguous built-up areas, and urban built-up areas in central cities. From the latest Landsat 8 satellite images, the paper obtains the data of urban built-up area in some of China’s big cities and makes a comparative study between the results of the urban built-up areas by the three definition methods and three other common statistical data. It finds that neither the area data nor the ranking is consistent. Finally, it further explores what causes differences in rankings and gives some advice for improving the definition of the urban built-up area.展开更多
基金National Natural Science Foundation of China(416711800).
文摘As an important goal of urban design research,the evaluation of urban spatial vitality has been widely concerned.Taking Shenzhen as an example,the urban built-up area of Shenzhen was identifi ed using improved DENsi-Graph analysis,from the perspective of quantifi cation of urban spatial morphological features.The accessibility of urban streets,degree of construction and architectural form,and degree of functional mixing were quantitatively analyzed through space syntax,space matrix and mixeduse index(MXI),and the spatial vitality of urban built-up area was evaluated.Research results demonstrated that the improved Densi-Graph analysis could better identify the built-up area of Shenzhen,and the overall classifi cation accuracy was 0.810.The analysis results of spatial vitality showed that the urban spatial vitality in Shenzhen urban built-up area was well created.The street accessibility of Shenzhen generally hindered the creation of urban vitality;the spatial matrix value in the north of Shenzhen urban built-up area was lower;and the MXI of most areas within the study area was above the medium.
基金Under the auspices of National Natural Science Foundation of China(No.41171143,40771064)Program for New Century Excellent Talents in University(No.NCET-07-0398)Fundamental Research Funds for the Central Universities(No.lzu-jbky-2012-k35)
文摘Since the reform and opening-up program started in 1978,the level of urbanization has increased rapidly in China.Rapid urban expansion and restructuring have had significant impacts on the ecological environment especially within built-up areas.In this study,ArcGIS 10,ENVI 4.5,and Visual FoxPro 6.0 were used to analyze the human impacts on vegetation in the built-up areas of 656Chinese cities from 1992 to 2010.Firstly,an existing algorithm was refined to extract the boundaries of the built-up areas based on the Defense Meteorological Satellite Program Operational Linescan System(DMSP_OLS)nighttime light data.This improved algorithm has the advantages of high accuracy and speed.Secondly,a mathematical model(Human impacts(HI))was constructed to measure the impacts of human factors on vegetation during rapid urbanization based on Advanced Very High Resolution Radiometer(AVHRR)Normalized Difference Vegetation Index(NDVI)and Moderate Resolution Imaging Spectroradiometer(MODIS)NDVI.HI values greater than zero indicate relatively beneficial effects while values less than zero indicate proportionally adverse effects.The results were analyzed from four aspects:the size of cities(metropolises,large cities,medium-sized cities,and small cities),large regions(the eastern,central,western,and northeastern China),administrative divisions of China(provinces,autonomous regions,and municipalities)and vegetation zones(humid and semi-humid forest zone,semi-arid steppe zone,and arid desert zone).Finally,we discussed how human factors impacted on vegetation changes in the built-up areas.We found that urban planning policies and developmental stages impacted on vegetation changes in the built-up areas.The negative human impacts followed an inverted′U′shape,first rising and then falling with increase of urban scales.China′s national policies,social and economic development affected vegetation changes in the built-up areas.The findings can provide a scientific basis for municipal planning departments,a decision-making reference for government,and scientific guidance for sustainable development in China.
文摘Urban river riparian spaces and their natural systems are valuable to urban dwellers;but are increasingly affected and ruined by human activities and in particular, urbanization processes. In this research, land sat and sentinel satellite imagery apt for change detection in vegetation cover, both landsat and sentinel imagery, covering the period between 1970 and 2021 in epochs of 1973, 1984, 1993, 2003, 2015 and 2021 years were used to establish the correlation between vegetation cover and built-up area along River Riara river reserve. The images were analysed to extract the built-up areas along the river reserve, including the buildings, and the rate of human settlements, which influenced vegetation cover. Normalized Difference Built-Up Index (NDBI) and Normalized Difference Vegetation Index (NDVI) were computed using the Short-Wave Infrared (SWIR) and the Near Infra-Red (NIR) bands to show the rate of change over the years. Results indicate NDVI values were high, compared to NDBI values along river Riara in the years 1973 and 1993 implying that there was more vegetation cover then. However, in the year 2021, the NDVI indicated the highest value at 0.88, with the complementary NDBI indicating the highest NDBI value at 0.47. This represents a significant increase in built-up areas since 2015 more than in previous epochs. Either, there was a significant increase in NDBI values, from 0.24 in 1993 to 0.47 in 2021. More so, the R-squared value at 0.80 informed 80% relationship between NDBI and NDVI values indicating a negative correlation.
文摘The rapid expansion of urban areas due to rise in population and economic growth is increasing additional demand on natural resources thereby causing land-use changes especially in megacities. Therefore, serious problems associated with rapid development such as additional infrastructure, informal settlements, environmental pollution, destruction of ecological structure and scarcity of natural resources has been studied carefully using remote sensing and GIS technologies for a rapidly grown megacity namely, Delhi. The present work evaluates the land use/land cover (LULC) changes and urban expansion in Mega city Delhi and highlights the major impact of rapid urbanization and population growth on the land cover changes which needs immediate attention. The results indicate that the city is expanding towards its peripheral region with the conversion of rural regions in to urban expansions. Built-up area of Delhi witnessed an overall increment from 540.7 km2 to 791.96 km2 or 16.86% of the total city area (1,490 km2 ) during the study period 1997 to 2008 which mainly came from agriculture land, waste land, scrub-land, sandy areas and water bodies. The increment in forest cover of 0.5 % is very small when considering the increment in built up category to 17%. Total area of waterbodies has reduced by 52.9% in a ten year period (58.26 km2 in 1997 to 27.43 km2 in 2008) with shallow waterbodies now having a dismal presence. LULC changes are studied with the urban growth parameters such as population, vehicles, gross state domestic product etc. The results lay emphasis on the concepts of urban planning to be applied such that more consideration is towards the preservation and management of natural land use classes which will increase the quality of life in an urban environment.
文摘Urbanization is termed as physical transformation of landscapes that alter the natural regime of the environment of its surrounding resulting in further changes in macro as well as micro climate of the region [1]. Urban areas are continually facing problems of water scarcity and urban flash floods. Recent news from IPCC report 2010, CIESIN’s Global Rural Urban Mapping Project [2] and World Water Vol. 7 2007, it is clear that urban land area has doubled and affected the hydrological cycle. The components of hydrological cycle affected are Infiltration, Runoff and Evaporation and the causing components are derived by studies as land use, land cover, water withdrawal and urban developments. Thus water availability, water recharge and water cycle are all destabilized in course or urban development. The paper is an attempt to correlate and identify the periodical changes in urban water cycle, during urbanization of Bhopal City, India, during last twenty years and above. The observations are based on GIS mapping of the study area from 1991 to 2009 using rational method of runoff and recharge calculations and statistical analysis of related built-up areas. Also change in natural course of drainages with the help of GIS imageries which have been detected during twenty years that help to observe the adaptation of natural system to urban course. Also the observations show an interesting relation which can be used for further research and sustainable development [3].
文摘Designing “liveable” cities as climate change effects are felt all over the world has become a priority to city authorities as ways are sought to reduce rising temperatures in urban areas. Urban Heat Island (UHI) effect occurs when there is a difference in temperature between rural and urban areas. In urban areas, impervious surfaces absorb heat during the day and release it at night, making urban areas warmer compared to rural areas which cool faster at night. This Urban Heat Island effect is particularly noticeable at night. Noticeable negative effects of Urban Heat Islands include health problems, air pollution, water shortages and higher energy requirements. The main objective of this research paper was to analyze the spatial and temporal relationship between Land Surface Temperature (LST) and Normalized Density Vegetation Index (NDVI) and Built-Up Density Index (BDI) in Upper-Hill, Nairobi Kenya. The changes in land cover would be represented by analyzing the two indices NDVI and BDI. Results showed the greatest increase in temperature within Upper-Hill of up to 3.96°C between the years 2015 and 2017. There was also an increase in impervious surfaces as indicated by NDVI and BDI within Upper-Hill and its surroundings. The linear regression results showed a negative correlation between LST and NDVI and a positive correlation with BDI, which is a better predictor of Land Surface Temperature than NDVI. Data sets were analyzed from Landsat imagery for the periods 1987, 2002, 2015 and 2017 to determine changes in land surface temperatures over a 30 year period and it’s relation to land cover changes using indices. Visual comparisons between Temperature differences between the years revealed that temperatures decreased around the urban areas. Minimum and maximum temperatures showed an increase of 1.6°C and 3.65°C respectively between 1987 and 2017. The comparisons between LST, NDVI and BDI show the results to be significantly different. The use of NDVI and BDI to study changes in land cover due to urbanization, reduces the time taken to manually classify moderate resolution satellite imagery.
文摘The change of land use plays a major role in the developmental activity of a developing country. Due to rapid growth of urbanisation and dramatic increasing population, the fertile agricultural land has been converted to built-up area with respect to the demand for housing requirement and to the need for basic infrastructure facilities. The quantum of open space and surface water bodies has also been encroached. There has been a rapid growth of population in Puducherry city from 3.48 million in 1991 to 5.44 million in 2011. Hence the conservation of natural resources becomes one of the major challenges especially in small and medium town. This study was conducted to assess the effect of change on land use in urban agglomeration area of Puducherry city for the duration period from 1997 to 2017. There has been an increase in population in Puducherry city mainly attributed to higher scale of migration from adjoining rural areas and medium town for better education, job opportunities and quality life. Hence, it has been strongly recommended for stringent Development Control Regulations to quantify the urban sprawl and manage the impact of urbanisation of land use/land cover in Puducherry city.
文摘The rapid transformation of rural settlements into municipalities in Nepal has brought significant changes in land use,and urban expansion and growth patterns mostly through the conversion of agricultural land into the built-up area.The issue is studied taking a case of the rapidly growing town,Barahathawa Municipality of Tarai Region of Sarlahi District.After the declaration of the municipality,several new roads have been opened and upgraded;and the municipality is well-connected to the national transportation network.After promulgated the Constitution of Nepal 2015 and functioning the elected local body,the municipality budget has been increased significantly as a result of increasing municipal investment in socio-economic and physical infrastructure development and environmental protection which has attracted people,goods,and services creating the zone of influence on the municipality.One of the changes found in the municipality is the increasing built-up area and expansion of urban growth through the decreasing agricultural land.Urban growth has been observed taking place around the Barahathawa Bazaar and main roadsides.The built-up area in Barahathawa municipality has remarkably increased by 183percent with the decrease of shrub and agricultural land within 10 years.Implications of such spatial and temporal dynamics have been a core issue of urban planning in most of the newly declared municipalities in Nepal.
文摘An improved methodology for the extraction and mapping of urban built-up areas at a global scale is presented in this study.The Moderate Resolution Imaging Spectroradiometer(MODIS)-based multispectral data were combined with the Visible Infrared Imager Radiometer Suite(VIIRS)-based nighttime light(NTL)data for robust extraction and mapping of urban built-up areas.The MODIS-based newly proposed Urban Built-up Index(UBI)was combined with NTL data,and the resulting Enhanced UBI(EUBI)was used as a single master image for global extraction of urban built-up areas.Due to higher variation of the EUBI with respect to geographical regions,a region-specific threshold approach was used to extract urban built-up areas.This research provided 500-m-resolution global urban built-up map of year 2014.The resulted map was compared with three existing moderate-resolution global maps and one high-resolution map in the United States.The comparative analysis demonstrated finer details of the urban built-up cover estimated by the resultant map.
文摘There is growing interest in using the urban landscape for stormwater management studies, where land patterns and processes can be important controls for the sustainability of urban development and planning. This paper proposes an original index of Major Hazard Oriented Level (MHOL) and investigates the structure distribution, driving factors, and controlling suggestions of urban-rural land growth in flood-prone areas in the Taihu Lake watershed, China. The MHOL of incremental urban-rural land increased from M 31.51 during the years 1985-1995 to M 38.37 during the years 1995-2010 (M for medium structure distribution, and the number for high-hazard value). The index shows that urban-rnraI land was distributed uniformly in flood hazard levels and tended to move rapidly to high-hazard areas, where 72.68% of incremental urban-rural land was aggregated maximally in new urban districts along the Huning traffic line and the Yangtze River. Thus, the current accelerating growth of new urban districts could account for the ampliative exposure to high-hazard areas. New districts are driven by the powerful link between land financial benefits and political achievements for local governments and the past unsustainable process of "single objective" oriented planning. The correlation categorical analysis of the current development intensity and carrying capacity of hydrological ecosystems for sub-basins was used to determine four types of development areas and provide decision makers with indications on the future watershed- scale subdivision of Major Function Oriented Zoning implemented by the Chinese government.
基金the support of the National Natural Science of China(Grant No.51878660)the National Natural Science of China(Grant No.51608527)the Natural Science of Jiangsu Province(Grant No.BK20191330).
文摘With the expansion of cities and the emergence of various urban problems,urban underground space has been developed as a solution.In China’s urban transition context,there is a need for the development of underground space in urban built-up areas.In this casestudy of the central city of Nanjing,we used spatial analysis and statistical methods to characterize the underground space use of urban built-up areas from a dynamic spatiotemporal perspective.We first analyzed the relationship between the population distribution and the underground space use of the central city of Nanjing based on a Baidu heat map,which can reflect the real-time population distribution,and then,we explored the spatiotemporal characteristics and spatial structure of the underground space use in urban built-up areas.The analysis results provide a reference for planning to improve and optimize the layout of underground space in the central city of Nanjing and,more generally,for the stock-type planning of underground space in urban built-up areas.
文摘Without a clear and unified definition of the urban built-up area, many city rankings by area are inconsistent, giving rise to confusion among the general public and even scholars. This paper summarizes various definitions of the urban built-up area and proposes three definition methods: all urban built-up areas in a municipal administrative area, concentrated contiguous built-up areas, and urban built-up areas in central cities. From the latest Landsat 8 satellite images, the paper obtains the data of urban built-up area in some of China’s big cities and makes a comparative study between the results of the urban built-up areas by the three definition methods and three other common statistical data. It finds that neither the area data nor the ranking is consistent. Finally, it further explores what causes differences in rankings and gives some advice for improving the definition of the urban built-up area.