In order to develop new reference materials for microanalytical nuclear techniques, scanning proton microprobe (SPM) technique was used to determine homogeneity level within 100×200 μm 2 micro area on the small ...In order to develop new reference materials for microanalytical nuclear techniques, scanning proton microprobe (SPM) technique was used to determine homogeneity level within 100×200 μm 2 micro area on the small pieces of IAEA urban dust reference materials. The experimental methods were described in detail. The results show that IAEA 396A/M Vienna urban dust is homogeneous enough for small sample analysis of standard reference material (SRM).展开更多
The total concentrations of Cd,As,Pb,Cr,Ni,Co,Zn,Cu,Ag,Hg,and Mo were determined in the atmospheric dust of the city of Yerevan by atomic absorption spectrometry(AAnalyst PE 800).Heavy metal pollution levels were eval...The total concentrations of Cd,As,Pb,Cr,Ni,Co,Zn,Cu,Ag,Hg,and Mo were determined in the atmospheric dust of the city of Yerevan by atomic absorption spectrometry(AAnalyst PE 800).Heavy metal pollution levels were evaluated by calculating geo-accumulation(I_(geo)) and summary pollution(Z_c) indices.Potential human health risk was assessed using the United States Environmental Protection agency's human health risk assessment model.The results show that mean contents of all elements tested except Ni and Cr were substantially higher than local geochemical background values.According to the I_(geo),Yerevan territory is strongly-to-extremely polluted by As,Ag,Hg,Mo,and Cd.The Z_c assessment indicated that very high pollution was detected in 36%of samples,high in 32%,average in 12%,and low in 20%.The health risk assessment revealed a noncarcinogenic risk(HI >1) for children at 13 samplings sites and for adults at one sampling site.For children the risk was due to elevated levels of Mo,Cd,Co,and As,while for adults,only Mo.Carcinogenic risk(>1:1,000,000) of As and Cr via ingestion pathway was observed in 25 and 14 samples,respectively.This study,therefore,is the base for further detailed investigations to organize problematic site remediation and risk reduction measures.展开更多
Atmospheric deposition, a major pathway of metals entering into soils, plays an important role in soil environment, especially in urban regions where a large amount of pollutants are emitted into atmosphere through va...Atmospheric deposition, a major pathway of metals entering into soils, plays an important role in soil environment, especially in urban regions where a large amount of pollutants are emitted into atmosphere through various sources. In order to understand the characteristics of atmospheric deposition in urban area and its relation with natural and anthropogenic sources, a three-year study of atmospheric deposition at three typical sites, industrial zone(IN), urban residential area(RZ) and suburban forested scenic area(FA),was carried out in Nanjing, a metropolitan city in eastern China from 2005 to 2007. The bulk deposition rate and element composition of atmospheric deposition varied spatio-temporally in the urban zones of Nanjing. The concentrations of Cu, Zn, Pb and Ca in the atmospheric deposits were strongly enriched in the whole Nanjing region; however, anthropogenic pollutants in atmospheric deposits were diluted by the input of external mineral dust transported from northwestern China. Source apportionment through principal component analysis(PCA) showed that the background atmospheric deposition at the FA site was the combination of external aerosol and local emission sources. The input of long-range transported Asian dust had an important influence on the urban background deposition, especially in spring when the continental dust from the northwestern China prevailed. Marine aerosol source was observed in summer and autumn, the seasons dominated by summer monsoon in Nanjing. In contrast, the contribution of local anthropogenic emission source was constant regardless of seasons. At the RZ and IN sites, the atmospheric deposition was more significantly affected by the nearby human activities than at the FA site. In addition, different urban activities and both the winter and summer Asian monsoons had substantial impacts on the characteristics of dust deposition in urban Nanjing.展开更多
Airborne particulate matter (PM) is of health and environmental concern not only in highly urbanized areas, but also in rural areas that are used for intensive agricultural purposes, In this study, PM size- segregat...Airborne particulate matter (PM) is of health and environmental concern not only in highly urbanized areas, but also in rural areas that are used for intensive agricultural purposes, In this study, PM size- segregated samples were collected simultaneously for 12 months in a small town (Belle Glade, Florida), which is the center of a vast sugarcane growing area and at Delray Beach, a coastal city in Palm Beach County, Florida. During the winter sampling period, when sugarcane foliage is burned just before harvest- ing to reduce the amount of plant matter to be handled, PM10 levels were 50% or higher than otherwise measured, indicating that sugarcane harvesting and processing is a major local source for PM10. For the rest of the year, PM10 levels at both sites are similar, suggesting that ambient PM levels at both sites are impacted by the major urban centers in Southern Florida. During late July and early August, the PM10 levels at both sites were substantially elevated and revealed the typical red-brownish color of Saharan dust. This has been reported to occur frequently with suitable meteorological conditions over the Atlantic Ocean coupled with a Sahara dust storm event. During the sugarcane harvesting season at Belle Glade, the concentrations of PAHs associated with PM10 were up to 15 times higher than those measured during the summer growing season, indicating a substantially higher exposure of the rural population to these often mutagenic and carcinogenic compounds.展开更多
文摘In order to develop new reference materials for microanalytical nuclear techniques, scanning proton microprobe (SPM) technique was used to determine homogeneity level within 100×200 μm 2 micro area on the small pieces of IAEA urban dust reference materials. The experimental methods were described in detail. The results show that IAEA 396A/M Vienna urban dust is homogeneous enough for small sample analysis of standard reference material (SRM).
基金implemented in the frames of a theme "Studying geochemical stream of elements in atmospheric air of Yerevan"(No 13-1E220,2011) under agreement-based(thematic) financial support of the State Committee of Science to the Ministry of Education and Sciences RA
文摘The total concentrations of Cd,As,Pb,Cr,Ni,Co,Zn,Cu,Ag,Hg,and Mo were determined in the atmospheric dust of the city of Yerevan by atomic absorption spectrometry(AAnalyst PE 800).Heavy metal pollution levels were evaluated by calculating geo-accumulation(I_(geo)) and summary pollution(Z_c) indices.Potential human health risk was assessed using the United States Environmental Protection agency's human health risk assessment model.The results show that mean contents of all elements tested except Ni and Cr were substantially higher than local geochemical background values.According to the I_(geo),Yerevan territory is strongly-to-extremely polluted by As,Ag,Hg,Mo,and Cd.The Z_c assessment indicated that very high pollution was detected in 36%of samples,high in 32%,average in 12%,and low in 20%.The health risk assessment revealed a noncarcinogenic risk(HI >1) for children at 13 samplings sites and for adults at one sampling site.For children the risk was due to elevated levels of Mo,Cd,Co,and As,while for adults,only Mo.Carcinogenic risk(>1:1,000,000) of As and Cr via ingestion pathway was observed in 25 and 14 samples,respectively.This study,therefore,is the base for further detailed investigations to organize problematic site remediation and risk reduction measures.
基金supported by the National Natural Science Foundation of China(Nos.41130530 and 40625001)
文摘Atmospheric deposition, a major pathway of metals entering into soils, plays an important role in soil environment, especially in urban regions where a large amount of pollutants are emitted into atmosphere through various sources. In order to understand the characteristics of atmospheric deposition in urban area and its relation with natural and anthropogenic sources, a three-year study of atmospheric deposition at three typical sites, industrial zone(IN), urban residential area(RZ) and suburban forested scenic area(FA),was carried out in Nanjing, a metropolitan city in eastern China from 2005 to 2007. The bulk deposition rate and element composition of atmospheric deposition varied spatio-temporally in the urban zones of Nanjing. The concentrations of Cu, Zn, Pb and Ca in the atmospheric deposits were strongly enriched in the whole Nanjing region; however, anthropogenic pollutants in atmospheric deposits were diluted by the input of external mineral dust transported from northwestern China. Source apportionment through principal component analysis(PCA) showed that the background atmospheric deposition at the FA site was the combination of external aerosol and local emission sources. The input of long-range transported Asian dust had an important influence on the urban background deposition, especially in spring when the continental dust from the northwestern China prevailed. Marine aerosol source was observed in summer and autumn, the seasons dominated by summer monsoon in Nanjing. In contrast, the contribution of local anthropogenic emission source was constant regardless of seasons. At the RZ and IN sites, the atmospheric deposition was more significantly affected by the nearby human activities than at the FA site. In addition, different urban activities and both the winter and summer Asian monsoons had substantial impacts on the characteristics of dust deposition in urban Nanjing.
文摘Airborne particulate matter (PM) is of health and environmental concern not only in highly urbanized areas, but also in rural areas that are used for intensive agricultural purposes, In this study, PM size- segregated samples were collected simultaneously for 12 months in a small town (Belle Glade, Florida), which is the center of a vast sugarcane growing area and at Delray Beach, a coastal city in Palm Beach County, Florida. During the winter sampling period, when sugarcane foliage is burned just before harvest- ing to reduce the amount of plant matter to be handled, PM10 levels were 50% or higher than otherwise measured, indicating that sugarcane harvesting and processing is a major local source for PM10. For the rest of the year, PM10 levels at both sites are similar, suggesting that ambient PM levels at both sites are impacted by the major urban centers in Southern Florida. During late July and early August, the PM10 levels at both sites were substantially elevated and revealed the typical red-brownish color of Saharan dust. This has been reported to occur frequently with suitable meteorological conditions over the Atlantic Ocean coupled with a Sahara dust storm event. During the sugarcane harvesting season at Belle Glade, the concentrations of PAHs associated with PM10 were up to 15 times higher than those measured during the summer growing season, indicating a substantially higher exposure of the rural population to these often mutagenic and carcinogenic compounds.