Purpose-This study aims to improve the passenger accessibility of passenger demands in the end-ofoperation period.Design/methodology/approach-A mixed integer nonlinear programming model for last train timetable optim...Purpose-This study aims to improve the passenger accessibility of passenger demands in the end-ofoperation period.Design/methodology/approach-A mixed integer nonlinear programming model for last train timetable optimization of the metro was proposed considering the constraints such as the maximum headway,the minimum headway and the latest end-of-operation time.The objective of the model is to maximize the number of reachable passengers in the end-of-operation period.A solution method based on a preset train service is proposed,which significantly reduces the variables of deciding train services in the original model and reformulates it into a mixed integer linear programming model.Findings-The results of the case study of Wuhan Metro show that the solution method can obtain highquality solutions in a shorter time;and the shorter the time interval of passenger flow data,the more obvious the advantage of solution speed;after optimization,the number of passengers reaching the destination among the passengers who need to take the last train during the end-of-operation period can be increased by 10%.Originality/value-Existing research results only consider the passengers who take the last train.Compared with previous research,considering the overall passenger demand during the end-of-operation period can make more passengers arrive at their destination.Appropriately delaying the end-of-operation time can increase the proportion of passengers who can reach the destination in the metro network,but due to the decrease in passenger demand,postponing the end-of-operation time has a bottleneck in increasing the proportion of passengers who can reach the destination.展开更多
基金supported by Talents Funds for Basic Scientific Research Business Expenses of Central Colleges and Universities (Grant No.2021RC228)Special Funds for Basic Scientific Research Business Expenses of Central Colleges and Universities (Grant No.2021YJS103).
文摘Purpose-This study aims to improve the passenger accessibility of passenger demands in the end-ofoperation period.Design/methodology/approach-A mixed integer nonlinear programming model for last train timetable optimization of the metro was proposed considering the constraints such as the maximum headway,the minimum headway and the latest end-of-operation time.The objective of the model is to maximize the number of reachable passengers in the end-of-operation period.A solution method based on a preset train service is proposed,which significantly reduces the variables of deciding train services in the original model and reformulates it into a mixed integer linear programming model.Findings-The results of the case study of Wuhan Metro show that the solution method can obtain highquality solutions in a shorter time;and the shorter the time interval of passenger flow data,the more obvious the advantage of solution speed;after optimization,the number of passengers reaching the destination among the passengers who need to take the last train during the end-of-operation period can be increased by 10%.Originality/value-Existing research results only consider the passengers who take the last train.Compared with previous research,considering the overall passenger demand during the end-of-operation period can make more passengers arrive at their destination.Appropriately delaying the end-of-operation time can increase the proportion of passengers who can reach the destination in the metro network,but due to the decrease in passenger demand,postponing the end-of-operation time has a bottleneck in increasing the proportion of passengers who can reach the destination.