Urban sediments have rapidly increased in recent years around the world,and their effective management has become an important problem.To remove heavy metals from stormwater runoff and use sediments as a resource,a no...Urban sediments have rapidly increased in recent years around the world,and their effective management has become an important problem.To remove heavy metals from stormwater runoff and use sediments as a resource,a novel ceramsite was developed using sewer pipe sediments(SPS),river bed sediments(RBS),urban water supply treatment sludge(WSTS),and wastewater treatment plant excess sludge(WWTS).The optimal composition was determined based on the Brunauer–Emmett–Teller specific surface area and an orthogonal test design.The adsorption characteristics of the novel ceramsite for dissolved heavy metals(Cu^(2+)and Cd^(2+)) were investigated through adsorption isotherms and kinetic experiments at(25±1)℃.Both Cu^(2+) and Cd^(2+) were effectively removed by the novel ceramsite,and their equilibrium adsorption was 4.96 mg·g^(-1) and 3.84 mg·g^(-1),respectively.Langmuir isotherms and a pseudo-first-order kinetic equation described the adsorption process better than other techniques.Characterization analysis of the ceramsite composition before and after heavy metal adsorption showed that the Cu^(2+) and Cd^(2+) contents in the ceramsite increased after adsorption.The results revealed that adsorption is both a physical and chemical process,and that ceramsite can be used as a bioretention medium to remove heavy metals from stormwater runoff while simultaneously converting problematic urban sediments into a resource.展开更多
Monitoring data are often used to identify stormwater runoff characteristics and in stormwater runoff modelling without consideration of their inherent uncertainties. Integrated with discrete sample analysis and error...Monitoring data are often used to identify stormwater runoff characteristics and in stormwater runoff modelling without consideration of their inherent uncertainties. Integrated with discrete sample analysis and error propagation analysis, this study attempted to quantify the uncertainties of discrete chemical oxygen demand (COD), total suspended solids (TSS) concentration, stormwater flowrate, stormwater event volumes, COD event mean concentration (EMC), and COD event loads in terms of flow measurement, sample collection, storage and laboratory analysis. The results showed that the uncertainties due to sample collection, storage and laboratory analysis of COD from stormwater runoff are 13.99%, 19.48% and 12.28%. Meanwhile, flow measurement uncertainty was 12.82%, and the sample collection uncertainty of TSS from stormwater runoff was 31.63%. Based on the law of propagation of uncertainties, the uncertainties regarding event flow volume, COD EMC and COD event loads were quantified as 7.03%, 10.26% and 18.47%.展开更多
Dissolved organic matter(DOM)plays a major role in ecological systems and influences the fate and transportation of many pollutants.Despite the significance of DOM,understanding of how environmental and anthropogenic ...Dissolved organic matter(DOM)plays a major role in ecological systems and influences the fate and transportation of many pollutants.Despite the significance of DOM,understanding of how environmental and anthropogenic factors influence its composition and characteristics is limited,especially in urban stormwater runoff.In this article,the chemical properties(pollutant loads,molecular weight,aromaticity,sources,and molecular composition)of DOM in stormwater extracted from three typical end-members(traffic,residential,and campus regions)were characterized by UV–visible(UV–vis)spectroscopy,excitationemission matrix spectroscopy combined with parallel factor analysis(EEM-PARAFAC),and ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS).There are three findings:(1)The basic properties of DOM in stormwater runoff varied obviously from three urban fields,and the effect of initial flush was also apparent.(2)The DOM in residential areas mainly came from autochthonous sources,while allochthonous sources primarily contributed to the DOM in traffic and campus areas.However,it was mainly composed of terrestrial humic-like components with CHO and CHON element composition and HULO and aliphatic formulas.(3)The parameters characterizing DOM were primarily related to terrestrial source and aromaticity,but their correlations varied.Through the combination of optical methods and UPLC-Q-TOF spectrometry,the optical and molecular characteristics of rainwater are effectively revealed,which may provide a solid foundation for the classification management of stormwater runoff in different urban regions.展开更多
To investigate the distribution of pollutant concentrations and pollution loads in stormwater runoff in Chongqing,six typical land use types were selected and studied from August 2009 to September 2011.Statistical ana...To investigate the distribution of pollutant concentrations and pollution loads in stormwater runoff in Chongqing,six typical land use types were selected and studied from August 2009 to September 2011.Statistical analysis on the distribution of pollutant concentrations in all water samples shows that pollutant concentrations fluctuate greatly in rainfall-runoff,and the concentrations of the same pollutant also vary greatly in different rainfall events.In addition,it indicates that the event mean concentrations (EMCs) of total suspended solids (TSS) and chemical oxygen demand (COD) from urban traffic roads (UTR) are significantly higher than those from residential roads (RR),commercial areas (CA),concrete roofs (CR),tile roofs (TRoof),and campus catchment areas (CCA);and the EMCs of total phosphorus (TP) and NH3-N from UTR and CA are 2.35-5 and 3 times of the class-III standard values specified in the Environmental Quality Standards for Surface Water (GB 3838-2002).The EMCs of Fe,Pb and Cd are also much higher than the class-III standard values.The analysis of pollution load producing coefficients (PLPC) reveals that the main pollution source of TSS,COD and TP is UTR.The analysis of correlations between rainfall factors and EMCs/PLPC indicates that rainfall duration is correlated with EMCs/PLPC of TSS for TRoof and TP for UTR,while rainfall intensity is correlated with EMCs/PLPC of TP for both CR and CCA.The results of this study provide a reference for better management of non-point source pollution in urban regions.展开更多
Runoff coefficient is an important parameter for the decision support of urban stormwater management. However, factors like comprehensive land-use type, variable spatial elevation, dynamic rainfall and groundwater ele...Runoff coefficient is an important parameter for the decision support of urban stormwater management. However, factors like comprehensive land-use type, variable spatial elevation, dynamic rainfall and groundwater elevation, make the direct estimation of runoff coefficient difficult. This paper presented a novel method to estimate the urban runoff coefficient using the inverse method, where observed time-series catchment outfall flow volume was employed as input for the water balance model and runoff coefficients of different catchments were treated as unknown parameters. A developed constrained minimization objective function was combined to solve the model and minimized error between observed and modeled outfall flow is satisfactory for the presenting of a set of runoff coefficients. Estimated runoff coefficients for the urban catchments in Shanghai downtown area demonstrated that practice of low impact design could play an important role in reducing the urban runoff.展开更多
基金Supported by the Training Project of Beijing Young Talents(2114751406)the Beijing Social Science Fund(15JGB052)+1 种基金the Beijing Municipal Science and Technology Project(D161100005916004)Beijing outstanding talent project for excellent youth team(2015000026833T0000)
文摘Urban sediments have rapidly increased in recent years around the world,and their effective management has become an important problem.To remove heavy metals from stormwater runoff and use sediments as a resource,a novel ceramsite was developed using sewer pipe sediments(SPS),river bed sediments(RBS),urban water supply treatment sludge(WSTS),and wastewater treatment plant excess sludge(WWTS).The optimal composition was determined based on the Brunauer–Emmett–Teller specific surface area and an orthogonal test design.The adsorption characteristics of the novel ceramsite for dissolved heavy metals(Cu^(2+)and Cd^(2+)) were investigated through adsorption isotherms and kinetic experiments at(25±1)℃.Both Cu^(2+) and Cd^(2+) were effectively removed by the novel ceramsite,and their equilibrium adsorption was 4.96 mg·g^(-1) and 3.84 mg·g^(-1),respectively.Langmuir isotherms and a pseudo-first-order kinetic equation described the adsorption process better than other techniques.Characterization analysis of the ceramsite composition before and after heavy metal adsorption showed that the Cu^(2+) and Cd^(2+) contents in the ceramsite increased after adsorption.The results revealed that adsorption is both a physical and chemical process,and that ceramsite can be used as a bioretention medium to remove heavy metals from stormwater runoff while simultaneously converting problematic urban sediments into a resource.
基金supported by the National Natural Science Foundation of China(No.50778098)the Youth Project of Fujian Provincial Department of Science&Technology(No.2007F3093)
文摘Monitoring data are often used to identify stormwater runoff characteristics and in stormwater runoff modelling without consideration of their inherent uncertainties. Integrated with discrete sample analysis and error propagation analysis, this study attempted to quantify the uncertainties of discrete chemical oxygen demand (COD), total suspended solids (TSS) concentration, stormwater flowrate, stormwater event volumes, COD event mean concentration (EMC), and COD event loads in terms of flow measurement, sample collection, storage and laboratory analysis. The results showed that the uncertainties due to sample collection, storage and laboratory analysis of COD from stormwater runoff are 13.99%, 19.48% and 12.28%. Meanwhile, flow measurement uncertainty was 12.82%, and the sample collection uncertainty of TSS from stormwater runoff was 31.63%. Based on the law of propagation of uncertainties, the uncertainties regarding event flow volume, COD EMC and COD event loads were quantified as 7.03%, 10.26% and 18.47%.
基金supported by the National Natural Science Foundation of China(No.51778451)the 111 Project(No.B13017)the Academic Capability Improvement Project(No.0400219422)of Tongji University。
文摘Dissolved organic matter(DOM)plays a major role in ecological systems and influences the fate and transportation of many pollutants.Despite the significance of DOM,understanding of how environmental and anthropogenic factors influence its composition and characteristics is limited,especially in urban stormwater runoff.In this article,the chemical properties(pollutant loads,molecular weight,aromaticity,sources,and molecular composition)of DOM in stormwater extracted from three typical end-members(traffic,residential,and campus regions)were characterized by UV–visible(UV–vis)spectroscopy,excitationemission matrix spectroscopy combined with parallel factor analysis(EEM-PARAFAC),and ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS).There are three findings:(1)The basic properties of DOM in stormwater runoff varied obviously from three urban fields,and the effect of initial flush was also apparent.(2)The DOM in residential areas mainly came from autochthonous sources,while allochthonous sources primarily contributed to the DOM in traffic and campus areas.However,it was mainly composed of terrestrial humic-like components with CHO and CHON element composition and HULO and aliphatic formulas.(3)The parameters characterizing DOM were primarily related to terrestrial source and aromaticity,but their correlations varied.Through the combination of optical methods and UPLC-Q-TOF spectrometry,the optical and molecular characteristics of rainwater are effectively revealed,which may provide a solid foundation for the classification management of stormwater runoff in different urban regions.
基金supported by the Major Projects on Control and Rectification of Water Body Pollution(No.2008ZX07315-001)
文摘To investigate the distribution of pollutant concentrations and pollution loads in stormwater runoff in Chongqing,six typical land use types were selected and studied from August 2009 to September 2011.Statistical analysis on the distribution of pollutant concentrations in all water samples shows that pollutant concentrations fluctuate greatly in rainfall-runoff,and the concentrations of the same pollutant also vary greatly in different rainfall events.In addition,it indicates that the event mean concentrations (EMCs) of total suspended solids (TSS) and chemical oxygen demand (COD) from urban traffic roads (UTR) are significantly higher than those from residential roads (RR),commercial areas (CA),concrete roofs (CR),tile roofs (TRoof),and campus catchment areas (CCA);and the EMCs of total phosphorus (TP) and NH3-N from UTR and CA are 2.35-5 and 3 times of the class-III standard values specified in the Environmental Quality Standards for Surface Water (GB 3838-2002).The EMCs of Fe,Pb and Cd are also much higher than the class-III standard values.The analysis of pollution load producing coefficients (PLPC) reveals that the main pollution source of TSS,COD and TP is UTR.The analysis of correlations between rainfall factors and EMCs/PLPC indicates that rainfall duration is correlated with EMCs/PLPC of TSS for TRoof and TP for UTR,while rainfall intensity is correlated with EMCs/PLPC of TP for both CR and CCA.The results of this study provide a reference for better management of non-point source pollution in urban regions.
基金Project supported by the China’s Major Science and Technology Program on Water Bodies Pollution Control and Treatment(Grant No.2013ZX07304-002)
文摘Runoff coefficient is an important parameter for the decision support of urban stormwater management. However, factors like comprehensive land-use type, variable spatial elevation, dynamic rainfall and groundwater elevation, make the direct estimation of runoff coefficient difficult. This paper presented a novel method to estimate the urban runoff coefficient using the inverse method, where observed time-series catchment outfall flow volume was employed as input for the water balance model and runoff coefficients of different catchments were treated as unknown parameters. A developed constrained minimization objective function was combined to solve the model and minimized error between observed and modeled outfall flow is satisfactory for the presenting of a set of runoff coefficients. Estimated runoff coefficients for the urban catchments in Shanghai downtown area demonstrated that practice of low impact design could play an important role in reducing the urban runoff.