Azole fungicides(AFs)play an important role in the prevention and treatment of fungal diseases in agricultural crops.However,limited studies are addressing the fate and ecological risk of AFs in the urban water cycle ...Azole fungicides(AFs)play an important role in the prevention and treatment of fungal diseases in agricultural crops.However,limited studies are addressing the fate and ecological risk of AFs in the urban water cycle at a large watershed scale.To address this gap,we investigated the spatiotemporal distribution and ecological risk of twenty AFs in the lower reaches of the Yangtze River across four seasons.Carbendazim(CBA),tebuconazole(TBA),tricyclazole(TCA),and propiconazole(PPA)were found to be the dominant compounds.Their highest concentrations were measured in January(188.3 ng/L),and November(2197.1 ng/L),July(162.0 ng/L),and November(1801.9 ng/L),respectively.The comparison between wastewater treatment plants(WWTPs)effluents and surface water suggested that industrial WWTPs are major sources of AFs in the Yangtze River.In particular,TBA and PPA were found to be the most recalcitrant AFs in industrial WWTPs,while difenoconazole(DFA)was found to be the most potent pollutant in municipal WWTPs,with an average removal rate of less than60%.The average risk quotient(RQ)for the entire AFs was 6.45 in the fall,which was higher than in January(0.98),April(0.61),and July(0.40).This indicates that AFs in surface water posed higher environmental risks during the dry season.Additionally,the exposure risk of AFs via drinking water for sensitive populations deserves more attention.This study provides benchmark data on the occurrence of AFs in the lower reaches of the Yangtze River,and offers suggestions for better reduction of AFs.展开更多
In order to find new approaches to alleviating the water crisis in Beijing which is caused by among others dwindling precipitation and rapid growth of population and manifests in a rapidly declining groundwater table ...In order to find new approaches to alleviating the water crisis in Beijing which is caused by among others dwindling precipitation and rapid growth of population and manifests in a rapidly declining groundwater table this study explores decentralized stormwater harvesting and greywater reuse at household level as a means to reduce groundwater abstraction and water transfer from other regions.Based on a desktop case study two concepts for combined harvesting and reusing of storm-and greywater are presented.With rough pre-assumptions calculations show that a saving of 67.8%of tap water consumption can be achieved with the upgrading concept compared with 5.9% with the simple downgrading concept.The saving with the upgrading concept equals 0.545 ×109 m3 annual water volume if 20 million Beijing people apply this approach.Despite numerous prerequisites such as water treatment technology space demand energy and cost and public acceptance this paper advocates combining stormwater harvesting and greywater reuse in households with other measures for Beijing’s sustainable water management.展开更多
Water use and socio-economic development are interconnected in complex ways.Causalities are not easy to identify but it is evident that a nexus between water use and socio-economic development does exist.Considering t...Water use and socio-economic development are interconnected in complex ways.Causalities are not easy to identify but it is evident that a nexus between water use and socio-economic development does exist.Considering the diversity of national situations relating to these interrelated phenomena,its study should be considered from a global perspective.This article critically reviews the literature and information from official sources on the relevance of water use and circular economy in order to create a global picture,linking water with socio-economic development.Data from 195 countries were analyzed statistically.A factor analysis defined five essential latent dimensions on the nexus between water use and socio-economic development:development and basic services,population and resources,economic volume,health and well-being,and population density.Based on the identified factors,countries were classified into six groups:Global South in difficulty,global semi-periphery,advanced economy,Middle East and other Global South developing economy,global weight,and small highly developed economy.The clustering results clarify connections between water use conditions and socioeconomic development.Understanding the variety of national profiles is helpful to reveal the magnitude and urgency of dealing with the nexus between water use and socio-economic development for many countries.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52270072,4222780043)。
文摘Azole fungicides(AFs)play an important role in the prevention and treatment of fungal diseases in agricultural crops.However,limited studies are addressing the fate and ecological risk of AFs in the urban water cycle at a large watershed scale.To address this gap,we investigated the spatiotemporal distribution and ecological risk of twenty AFs in the lower reaches of the Yangtze River across four seasons.Carbendazim(CBA),tebuconazole(TBA),tricyclazole(TCA),and propiconazole(PPA)were found to be the dominant compounds.Their highest concentrations were measured in January(188.3 ng/L),and November(2197.1 ng/L),July(162.0 ng/L),and November(1801.9 ng/L),respectively.The comparison between wastewater treatment plants(WWTPs)effluents and surface water suggested that industrial WWTPs are major sources of AFs in the Yangtze River.In particular,TBA and PPA were found to be the most recalcitrant AFs in industrial WWTPs,while difenoconazole(DFA)was found to be the most potent pollutant in municipal WWTPs,with an average removal rate of less than60%.The average risk quotient(RQ)for the entire AFs was 6.45 in the fall,which was higher than in January(0.98),April(0.61),and July(0.40).This indicates that AFs in surface water posed higher environmental risks during the dry season.Additionally,the exposure risk of AFs via drinking water for sensitive populations deserves more attention.This study provides benchmark data on the occurrence of AFs in the lower reaches of the Yangtze River,and offers suggestions for better reduction of AFs.
文摘In order to find new approaches to alleviating the water crisis in Beijing which is caused by among others dwindling precipitation and rapid growth of population and manifests in a rapidly declining groundwater table this study explores decentralized stormwater harvesting and greywater reuse at household level as a means to reduce groundwater abstraction and water transfer from other regions.Based on a desktop case study two concepts for combined harvesting and reusing of storm-and greywater are presented.With rough pre-assumptions calculations show that a saving of 67.8%of tap water consumption can be achieved with the upgrading concept compared with 5.9% with the simple downgrading concept.The saving with the upgrading concept equals 0.545 ×109 m3 annual water volume if 20 million Beijing people apply this approach.Despite numerous prerequisites such as water treatment technology space demand energy and cost and public acceptance this paper advocates combining stormwater harvesting and greywater reuse in households with other measures for Beijing’s sustainable water management.
基金support from the Fundação para a Ciência e a Tecnologia(FCT)Foundation for Science and Technology(DL57/2016/CP1341/CT0013).
文摘Water use and socio-economic development are interconnected in complex ways.Causalities are not easy to identify but it is evident that a nexus between water use and socio-economic development does exist.Considering the diversity of national situations relating to these interrelated phenomena,its study should be considered from a global perspective.This article critically reviews the literature and information from official sources on the relevance of water use and circular economy in order to create a global picture,linking water with socio-economic development.Data from 195 countries were analyzed statistically.A factor analysis defined five essential latent dimensions on the nexus between water use and socio-economic development:development and basic services,population and resources,economic volume,health and well-being,and population density.Based on the identified factors,countries were classified into six groups:Global South in difficulty,global semi-periphery,advanced economy,Middle East and other Global South developing economy,global weight,and small highly developed economy.The clustering results clarify connections between water use conditions and socioeconomic development.Understanding the variety of national profiles is helpful to reveal the magnitude and urgency of dealing with the nexus between water use and socio-economic development for many countries.