Spatio-temporal distribution characteristics and variation trends of tropospheric NO_2 in Pearl River Delta(PRD) urban group and its adjacent areas were analyze from 2005 to 2013 based on remote sensing data from ozon...Spatio-temporal distribution characteristics and variation trends of tropospheric NO_2 in Pearl River Delta(PRD) urban group and its adjacent areas were analyze from 2005 to 2013 based on remote sensing data from ozone monitoring instrument(OMI) satellite, and further explored the impact of human activities on NO_2. Compared with the ground observation data, the OMI NO_2 remote sensing data displayed high reliability. Due to active industrial production, high car ownership, great energy and power consumption, the average tropospheric NO_2concentration(7.4×1015molec/cm2) of PRD region is about 3 times of the adjacent areas. At the same time, the regional high pollution NO_2 in PRD region as a whole, the urban group effect is remarkable. Sinusoidal model can well fit the periodic variation of the NO_2 in PRD and adjacent areas. NO_2 concentration was highest in winter while lowest in summer. The concentration of NO_2 in PRD region is decreasing in recent 9 years, which has a significantly negative correlation with the second industry output and car ownership. This suggests that the nitrogen oxide emissions governance in PRD region had achieved initial results. The concentration of NO_2 increased significantly in the eastern and northern Guangdong Province, there are good positive correlations with the second industrial outputs and car ownerships, it is thus clear that industrial emissions and automobile exhausts are important sources of NO_2 in these regions. The concentration of NO_2 in western Guangdong area is stable.展开更多
This paper attempts to integrate urban development and ecological conservation by applying and syncretizing the “urban region” concept from landscape ecology and the “city-region” concept from socioeconomics. Firs...This paper attempts to integrate urban development and ecological conservation by applying and syncretizing the “urban region” concept from landscape ecology and the “city-region” concept from socioeconomics. First, various concepts pertaining to regions are discussed and then, the integration of ecological conservation and urban development on a regional scale is introduced. Subsequently, the Greater Pearl River Delta, in China, is used as a case study area and landscape ecology’s “urban region” concept is applied to produce a landscape spatial arrangement framework for an urban region. This framework is achieved through the following steps: conceiving the study area as a region that consists of two urban regions, arranging ecological conservation landscapes by establishing a regional ecological network within the urban-region rings;and formulating an urban development strategy using central place theory. The resulting landscape spatial arrangement solution includes natural protection areas that cover half of the study area, several key strategic urbanizing locations, and suggestions for the strict protection of certain agricultural land-use areas. We believe that this framework facilitates a feasible exploration of land-use planning on a regional scale, although more in-depth studies are required to refine this approach.展开更多
基金Special Scientific Research Fund of Meteorological Public Welfare Profession of China(201306042)Natural Science Foundation of Guangdong Province(S2013040015704)+2 种基金Guangdong Science and Technology Plan Project(2011A032100006,2012A061400012)Guangzhou Science and Technology Plan Project(2014J4100021)Science and Technology Research Program of the Guangdong Provincial Meteorological Bureau(2013A01,2013Q01)
文摘Spatio-temporal distribution characteristics and variation trends of tropospheric NO_2 in Pearl River Delta(PRD) urban group and its adjacent areas were analyze from 2005 to 2013 based on remote sensing data from ozone monitoring instrument(OMI) satellite, and further explored the impact of human activities on NO_2. Compared with the ground observation data, the OMI NO_2 remote sensing data displayed high reliability. Due to active industrial production, high car ownership, great energy and power consumption, the average tropospheric NO_2concentration(7.4×1015molec/cm2) of PRD region is about 3 times of the adjacent areas. At the same time, the regional high pollution NO_2 in PRD region as a whole, the urban group effect is remarkable. Sinusoidal model can well fit the periodic variation of the NO_2 in PRD and adjacent areas. NO_2 concentration was highest in winter while lowest in summer. The concentration of NO_2 in PRD region is decreasing in recent 9 years, which has a significantly negative correlation with the second industry output and car ownership. This suggests that the nitrogen oxide emissions governance in PRD region had achieved initial results. The concentration of NO_2 increased significantly in the eastern and northern Guangdong Province, there are good positive correlations with the second industrial outputs and car ownerships, it is thus clear that industrial emissions and automobile exhausts are important sources of NO_2 in these regions. The concentration of NO_2 in western Guangdong area is stable.
文摘This paper attempts to integrate urban development and ecological conservation by applying and syncretizing the “urban region” concept from landscape ecology and the “city-region” concept from socioeconomics. First, various concepts pertaining to regions are discussed and then, the integration of ecological conservation and urban development on a regional scale is introduced. Subsequently, the Greater Pearl River Delta, in China, is used as a case study area and landscape ecology’s “urban region” concept is applied to produce a landscape spatial arrangement framework for an urban region. This framework is achieved through the following steps: conceiving the study area as a region that consists of two urban regions, arranging ecological conservation landscapes by establishing a regional ecological network within the urban-region rings;and formulating an urban development strategy using central place theory. The resulting landscape spatial arrangement solution includes natural protection areas that cover half of the study area, several key strategic urbanizing locations, and suggestions for the strict protection of certain agricultural land-use areas. We believe that this framework facilitates a feasible exploration of land-use planning on a regional scale, although more in-depth studies are required to refine this approach.