Background: Nitrogen(N), phosphorous(P), and potassium(K) are critical nutrient elements necessary for crop plant growth and development. However, excessive inputs will lead to inefficient usage and cause exces...Background: Nitrogen(N), phosphorous(P), and potassium(K) are critical nutrient elements necessary for crop plant growth and development. However, excessive inputs will lead to inefficient usage and cause excessive nutrient losses in the field environment, and also adversely affect the soil, water and air quality, human health, and biodiversity. Methods: Field experiments were conducted to study the effects of controlled-release fertilizer(CRF) on seed yield, plant growth, nutrient uptake, and fertilizer usage efficiency for early ripening rapeseed(Xiangzayou 1613) in the red-yellow soil of southern China during 2011–2013. It was grown using a soluble fertilizer(SF) and the same amounts of CRF, such as SF1/CRF1(3750 kg/hm^2), SF2/CRF2(3000 kg/hm^2), SF3/CRF3(2250 kg/hm^2), SF4/CRF4(1500 kg/hm^2), SF5/CRF5(750 kg/hm^2), and also using no fertilizer(CK). Results: CRF gave higher seed yields than SF in both seasons by 14.51%. CRF4 and SF3 in each group achieved maximum seed yield(2066.97 and 1844.50 kg/hm^2, respectively), followed by CRF3(1929.97 kg/hm^2) and SF4(1839.40 kg/hm^2). There were no significant differences in seed yield among CK, SF1, and CRF1(P0.05). CRF4 had the highest profit(7126.4 CNY/hm2) and showed an increase of 12.37% in seed yield, and it decreased by 11.01% in unit fertilizer rate compared with SF4. The branch number, pod number, and dry matter weight compared with SF increased significantly under the fertilization of CRF(P0.05). The pod number per plant was the major contributor to seed yield. On the other hand, the N, P, and K uptakes increased at first and then decreased with increasing the fertilizer rate at maturity, and the N, P, and K usage efficiency decreased with increasing the fertilizer rate. The N, P, and K uptakes and usage efficiencies of the CRF were significantly higher than those of SF(P0.05). The N accumulation and N usage efficiency of CRF increased by an average of 13.66% and 9.74 percentage points, respectively, compared to SF. In conclusion, CRF significantly promoted the growth of rapeseed with using total N as the base fertilizer, by providing sufficient N in the later growth stages, and last by reducing the residual N in the soil and increasing the N accumulation and N usage efficiency.展开更多
In this study,the employment of mud-pulse generators to improve the efficiency of wellbores under complex mining and geological conditions is examined.A systemic analysis is made of the primary theoretical basis of th...In this study,the employment of mud-pulse generators to improve the efficiency of wellbores under complex mining and geological conditions is examined.A systemic analysis is made of the primary theoretical basis of the study.The benefits of a mud-pulse generator(a high-impulse hydraulic hammer)for wellbore production are stated based on the presented theoretical basis.The results not only show the benefits of mud-pulse generator employment but also provide an analysis of methods that can be used to improve the high-impulse hydraulic hammer efficiency.The acquired results have a substantial practical value not only for specialists,who research,develop,and manage wellbore operations,but also for engineers,who improve the process and modernize existing wellbores,and other experts in the field of wellbore production.展开更多
基金supported by the National Natural Science Foundation of China(No.31372310)the Youth Fund of Orient Science and Technology College of Hunan Agricultural University(No.14QNZ09)+1 种基金the Cultivation Physiology Station of National Technical System in Rapeseed Industry(No.CARS-13)the National Key Technology R&D Program of China(Nos.2012BAD15B04,2014BAC09B01-01,and 2014BAD14B01)
文摘Background: Nitrogen(N), phosphorous(P), and potassium(K) are critical nutrient elements necessary for crop plant growth and development. However, excessive inputs will lead to inefficient usage and cause excessive nutrient losses in the field environment, and also adversely affect the soil, water and air quality, human health, and biodiversity. Methods: Field experiments were conducted to study the effects of controlled-release fertilizer(CRF) on seed yield, plant growth, nutrient uptake, and fertilizer usage efficiency for early ripening rapeseed(Xiangzayou 1613) in the red-yellow soil of southern China during 2011–2013. It was grown using a soluble fertilizer(SF) and the same amounts of CRF, such as SF1/CRF1(3750 kg/hm^2), SF2/CRF2(3000 kg/hm^2), SF3/CRF3(2250 kg/hm^2), SF4/CRF4(1500 kg/hm^2), SF5/CRF5(750 kg/hm^2), and also using no fertilizer(CK). Results: CRF gave higher seed yields than SF in both seasons by 14.51%. CRF4 and SF3 in each group achieved maximum seed yield(2066.97 and 1844.50 kg/hm^2, respectively), followed by CRF3(1929.97 kg/hm^2) and SF4(1839.40 kg/hm^2). There were no significant differences in seed yield among CK, SF1, and CRF1(P0.05). CRF4 had the highest profit(7126.4 CNY/hm2) and showed an increase of 12.37% in seed yield, and it decreased by 11.01% in unit fertilizer rate compared with SF4. The branch number, pod number, and dry matter weight compared with SF increased significantly under the fertilization of CRF(P0.05). The pod number per plant was the major contributor to seed yield. On the other hand, the N, P, and K uptakes increased at first and then decreased with increasing the fertilizer rate at maturity, and the N, P, and K usage efficiency decreased with increasing the fertilizer rate. The N, P, and K uptakes and usage efficiencies of the CRF were significantly higher than those of SF(P0.05). The N accumulation and N usage efficiency of CRF increased by an average of 13.66% and 9.74 percentage points, respectively, compared to SF. In conclusion, CRF significantly promoted the growth of rapeseed with using total N as the base fertilizer, by providing sufficient N in the later growth stages, and last by reducing the residual N in the soil and increasing the N accumulation and N usage efficiency.
文摘In this study,the employment of mud-pulse generators to improve the efficiency of wellbores under complex mining and geological conditions is examined.A systemic analysis is made of the primary theoretical basis of the study.The benefits of a mud-pulse generator(a high-impulse hydraulic hammer)for wellbore production are stated based on the presented theoretical basis.The results not only show the benefits of mud-pulse generator employment but also provide an analysis of methods that can be used to improve the high-impulse hydraulic hammer efficiency.The acquired results have a substantial practical value not only for specialists,who research,develop,and manage wellbore operations,but also for engineers,who improve the process and modernize existing wellbores,and other experts in the field of wellbore production.