With the popularity of 5G and the rapid development of mobile terminals,an endless stream of short video software exists.Browsing short-form mobile video in fragmented time has become the mainstream of user’s life.He...With the popularity of 5G and the rapid development of mobile terminals,an endless stream of short video software exists.Browsing short-form mobile video in fragmented time has become the mainstream of user’s life.Hence,designing an efficient short video recommendation method has become important for major network platforms to attract users and satisfy their requirements.Nevertheless,the explosive growth of data leads to the low efficiency of the algorithm,which fails to distill users’points of interest on one hand effectively.On the other hand,integrating user preferences and the content of items urgently intensify the requirements for platform recommendation.In this paper,we propose a collaborative filtering algorithm,integrating time context information and user context,which pours attention into expanding and discovering user interest.In the first place,we introduce the temporal context information into the typical collaborative filtering algorithm,and leverage the popularity penalty function to weight the similarity between recommended short videos and the historical short videos.There remains one more point.We also introduce the user situation into the traditional collaborative filtering recommendation algorithm,considering the context information of users in the generation recommendation stage,and weight the recommended short-formvideos of candidates.At last,a diverse approach is used to generate a Top-K recommendation list for users.And through a case study,we illustrate the accuracy and diversity of the proposed method.展开更多
Context awareness is increasingly gaining applicability in interactive ubiquitous mobile computing systems. Each context-aware application has its own set of behaviors to react to context modifications. Hence, every s...Context awareness is increasingly gaining applicability in interactive ubiquitous mobile computing systems. Each context-aware application has its own set of behaviors to react to context modifications. Hence, every software engineer needs to clearly understand the goal of the development and to categorize the context in the application. We incorporate context-based modifications into the appearance or the behavior of the interface, either at the design time or at the run time. In this paper, we present application behavior adaption to the context modification via a context-based user interface in a mobile application. We are interested in a context-based user interface in a mobile device that is automatically adapted based on the context information. We use the adaption tree, named in our methodology, to represent the adaption of mobile device user interface to various context information. The context includes the user’s domain information and dynamic environment changes. Each path in the adaption tree, from the root to the leaf, presents an adaption rule. An e-commerce application is chosen to illustrate our approach. This mobile application was developed based on the adaption tree in the Android platform. The automatic adaption to the context information has enhanced human-computer interactions.展开更多
The GeoEduc3D project aims to provide educational games for smartphones based on Geomatics and use augmented reality techniques in order to make these games more immersive. To improve the immersive and interactive asp...The GeoEduc3D project aims to provide educational games for smartphones based on Geomatics and use augmented reality techniques in order to make these games more immersive. To improve the immersive and interactive aspects of those games, we focused on the exploitation of spatial context in this particular application framework (serious games, augmented reality, smart phones, and multi-users environment). Our work has thus led to the design of a solution dedicated to the management of spatial context in a multi-players environment on and for smartphones. Several contributions have been made: modeling spatial context, proposing a service-oriented architecture to manage this context, defining a Web Service Spatial Context (WSCS) and implementation of a WSCS prototype and a mobile client according to an environment exploiting FourSquare, a geo-social application.展开更多
为了提高兴趣点(point of interest,POI)推荐的准确性和个性化,提升用户对推荐结果的满意度,针对不同活跃度用户的特点,提出一种融合用户活跃度的上下文感知兴趣点推荐算法(A POI recommendation algorithm that integrates geographica...为了提高兴趣点(point of interest,POI)推荐的准确性和个性化,提升用户对推荐结果的满意度,针对不同活跃度用户的特点,提出一种融合用户活跃度的上下文感知兴趣点推荐算法(A POI recommendation algorithm that integrates geographical,categorical,and temporal factors,while simultaneously considering user activity),简称AU-GCTRS。首先,为缓解数据稀疏性和冷启动问题,引入多维上下文信息;其次,通过挖掘用户签到频率、签到兴趣点数量和签到时间,将用户划分为不同活跃度的群体;最后,综合用户活跃度与上下文分数,将得分高的前K个兴趣点推荐给用户。在真实数据集上进行实验表明,AU-GCTRS算法比其他流行算法更有效地缓解了数据稀疏性和冷启动问题,提高了推荐准确率和召回率。展开更多
文摘With the popularity of 5G and the rapid development of mobile terminals,an endless stream of short video software exists.Browsing short-form mobile video in fragmented time has become the mainstream of user’s life.Hence,designing an efficient short video recommendation method has become important for major network platforms to attract users and satisfy their requirements.Nevertheless,the explosive growth of data leads to the low efficiency of the algorithm,which fails to distill users’points of interest on one hand effectively.On the other hand,integrating user preferences and the content of items urgently intensify the requirements for platform recommendation.In this paper,we propose a collaborative filtering algorithm,integrating time context information and user context,which pours attention into expanding and discovering user interest.In the first place,we introduce the temporal context information into the typical collaborative filtering algorithm,and leverage the popularity penalty function to weight the similarity between recommended short videos and the historical short videos.There remains one more point.We also introduce the user situation into the traditional collaborative filtering recommendation algorithm,considering the context information of users in the generation recommendation stage,and weight the recommended short-formvideos of candidates.At last,a diverse approach is used to generate a Top-K recommendation list for users.And through a case study,we illustrate the accuracy and diversity of the proposed method.
文摘Context awareness is increasingly gaining applicability in interactive ubiquitous mobile computing systems. Each context-aware application has its own set of behaviors to react to context modifications. Hence, every software engineer needs to clearly understand the goal of the development and to categorize the context in the application. We incorporate context-based modifications into the appearance or the behavior of the interface, either at the design time or at the run time. In this paper, we present application behavior adaption to the context modification via a context-based user interface in a mobile application. We are interested in a context-based user interface in a mobile device that is automatically adapted based on the context information. We use the adaption tree, named in our methodology, to represent the adaption of mobile device user interface to various context information. The context includes the user’s domain information and dynamic environment changes. Each path in the adaption tree, from the root to the leaf, presents an adaption rule. An e-commerce application is chosen to illustrate our approach. This mobile application was developed based on the adaption tree in the Android platform. The automatic adaption to the context information has enhanced human-computer interactions.
基金SuppoSed by the National Natural Science Foundation of China under Grant Nos.6067319560703078(国家自然科学基金)+2 种基金the National High-Tech Research and Development Plan of China under Grant No.2007AA04Z113(国家高技术研究发展计划(863))the National Basic Research Program of China under Grant No.2006CB303105(国家重点基础研究发展规划(973))the National Key Technology R&D Program of China under Grant No.2006BAF01A17(国家科技支撑计划)
文摘The GeoEduc3D project aims to provide educational games for smartphones based on Geomatics and use augmented reality techniques in order to make these games more immersive. To improve the immersive and interactive aspects of those games, we focused on the exploitation of spatial context in this particular application framework (serious games, augmented reality, smart phones, and multi-users environment). Our work has thus led to the design of a solution dedicated to the management of spatial context in a multi-players environment on and for smartphones. Several contributions have been made: modeling spatial context, proposing a service-oriented architecture to manage this context, defining a Web Service Spatial Context (WSCS) and implementation of a WSCS prototype and a mobile client according to an environment exploiting FourSquare, a geo-social application.
文摘为了提高兴趣点(point of interest,POI)推荐的准确性和个性化,提升用户对推荐结果的满意度,针对不同活跃度用户的特点,提出一种融合用户活跃度的上下文感知兴趣点推荐算法(A POI recommendation algorithm that integrates geographical,categorical,and temporal factors,while simultaneously considering user activity),简称AU-GCTRS。首先,为缓解数据稀疏性和冷启动问题,引入多维上下文信息;其次,通过挖掘用户签到频率、签到兴趣点数量和签到时间,将用户划分为不同活跃度的群体;最后,综合用户活跃度与上下文分数,将得分高的前K个兴趣点推荐给用户。在真实数据集上进行实验表明,AU-GCTRS算法比其他流行算法更有效地缓解了数据稀疏性和冷启动问题,提高了推荐准确率和召回率。