期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A Framework for Personalized Adaptive User Interest Prediction Based on Topic Model and Forgetting Mechanism 被引量:1
1
作者 GUI Sisi LU Wei +1 位作者 ZHOU Pengcheng ZHENG Zhan 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2018年第1期9-16,共8页
User interest is not static and changes dynamically. In the scenario of a search engine, this paper presents a personalized adaptive user interest prediction framework. It represents user interest as a topic distribut... User interest is not static and changes dynamically. In the scenario of a search engine, this paper presents a personalized adaptive user interest prediction framework. It represents user interest as a topic distribution, captures every change of user interest in the history, and uses the changes to predict future individual user interest dynamically. More specifically, it first uses a personalized user interest representation model to infer user interest from queries in the user's history data using a topic model; then it presents a personalized user interest prediction model to capture the dynamic changes of user interest and to predict future user interest by leveraging the query submission time in the history data. Compared with the Interest Degree Multi-Stage Quantization Model, experiment results on an AOL Search Query Log query log show that our framework is more stable and effective in user interest prediction. 展开更多
关键词 user interest user interest presentation user interestprediction topic model forgetting mechanism
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部