User interest is not static and changes dynamically. In the scenario of a search engine, this paper presents a personalized adaptive user interest prediction framework. It represents user interest as a topic distribut...User interest is not static and changes dynamically. In the scenario of a search engine, this paper presents a personalized adaptive user interest prediction framework. It represents user interest as a topic distribution, captures every change of user interest in the history, and uses the changes to predict future individual user interest dynamically. More specifically, it first uses a personalized user interest representation model to infer user interest from queries in the user's history data using a topic model; then it presents a personalized user interest prediction model to capture the dynamic changes of user interest and to predict future user interest by leveraging the query submission time in the history data. Compared with the Interest Degree Multi-Stage Quantization Model, experiment results on an AOL Search Query Log query log show that our framework is more stable and effective in user interest prediction.展开更多
基金Supported by the National Natural Science Foundation of China(71473183,71503188)
文摘User interest is not static and changes dynamically. In the scenario of a search engine, this paper presents a personalized adaptive user interest prediction framework. It represents user interest as a topic distribution, captures every change of user interest in the history, and uses the changes to predict future individual user interest dynamically. More specifically, it first uses a personalized user interest representation model to infer user interest from queries in the user's history data using a topic model; then it presents a personalized user interest prediction model to capture the dynamic changes of user interest and to predict future user interest by leveraging the query submission time in the history data. Compared with the Interest Degree Multi-Stage Quantization Model, experiment results on an AOL Search Query Log query log show that our framework is more stable and effective in user interest prediction.