This paper studies and predicts the number growth of China's mobile users by using the power-law regression. We find that the number growth of the mobile users follows a power law. Motivated by the data on the evolut...This paper studies and predicts the number growth of China's mobile users by using the power-law regression. We find that the number growth of the mobile users follows a power law. Motivated by the data on the evolution of the mobile users, we consider scenarios of self-organization of accelerating growth networks into scale-free structures and propose a directed network model, in which the nodes grow following a power-law acceleration. The expressions for the transient and the stationary average degree distributions are obtained by using the Poisson process. This result shows that the model generates appropriate power-law connectivity distributions. Therefore, we find a power-law acceleration invariance of the scale-free networks. The numerical simulations of the models agree with the analytical results well.展开更多
To mitigate interference on celledge users and improve fairness of the whole system, dynamic inter-cell interference coordination(ICIC) is one of the promising solutions. However, traditional dynamic ICIC is considere...To mitigate interference on celledge users and improve fairness of the whole system, dynamic inter-cell interference coordination(ICIC) is one of the promising solutions. However, traditional dynamic ICIC is considered as an NP-hard problem and power variability further adds another dimension to this joint optimization issue, making it even more difficult to quickly reach a near-optimal solution. Therefore, we theoretically obtain the closed-form expression of the near-optimal power allocation ratio for users in adjacent cells paired in the same resource block and interfere each other, so that the total utility corresponding to α-fairness is maximized. Dynamic ICIC using this closed-form solution could improve user fairness without causing an increment of the computational complexity. Numerical results show that, compared with the schemes using identical power for different users, our method does not obviously degrade the system's average spectral efficiency.展开更多
A power allocation scheme for multi-user multiple-input multiple-output orthogonal frequency division multiplexing (MI- MO-OFDM) systems with channel state information (CSI) on transmitter and receiver is pressed....A power allocation scheme for multi-user multiple-input multiple-output orthogonal frequency division multiplexing (MI- MO-OFDM) systems with channel state information (CSI) on transmitter and receiver is pressed. Multi-user lower allocation can be decoupled into single user lower allocation throughout null space mapping of multi-user channel and lower allocation can be performed throughout spatial-spectral water-filling for per user.To deal with more users in system and fading correlation,scheduling is oerformed to maintain the gain of power allocation.The proposed scheme can substantially improve system's spectral efficiency with low complexity.Simulation results validate the accuracy of theoretic analyses.展开更多
This paper outlined a Non-Orthogonal Multiple Access (NOMA) grouping transmission scheme for cognitive radio networks. To address the problems of small channel gain difference of the middle part users caused by the tr...This paper outlined a Non-Orthogonal Multiple Access (NOMA) grouping transmission scheme for cognitive radio networks. To address the problems of small channel gain difference of the middle part users caused by the traditional far-near pairing algorithm, and the low transmission rate of the traditional Orthogonal Multiple Access (OMA) transmission, a joint pairing algorithm was proposed, which provided multiple pairing schemes according to the actual scene. Firstly, the secondary users were sorted according to their channel gain, and then different secondary user groups were divided, and the far-near pairing combined with (Uniform Channel Gain Difference (UCGD) algorithm was used to group the secondary users. After completing the user pairing, the power allocation problem was solved. Finally, the simulation data results showed that the proposed algorithm can effectively improve the system transmission rate.展开更多
在基于非正交多址接入技术的多用户下行室内可见光通信(Visible light communication system based on non⁃orthogonal multiple access technology,VLC⁃NOMA)系统中,针对和速率与用户公平性冲突的问题,提出一种基于加权和速率最大化的...在基于非正交多址接入技术的多用户下行室内可见光通信(Visible light communication system based on non⁃orthogonal multiple access technology,VLC⁃NOMA)系统中,针对和速率与用户公平性冲突的问题,提出一种基于加权和速率最大化的迭代功率分配方案。该方案以最大化加权和速率为目标,可通过改变权重因子来调节用户公平性。由于目标问题属于非凸优化问题,通过辅助变量法和凸优化理论将该非凸问题转化为凹问题,再通过拉格朗日对偶法进行求解,并根据问题的解设计了一种迭代功率分配算法。对所提算法的收敛性、系统和速率以及用户公平性进行了仿真。结果表明,所提迭代功率分配算法具有良好的收敛性,相较于VLC⁃OMA系统,VLC⁃NOMA系统能够获得更好的和速率性能。通过调整权重因子,在牺牲较小系统和速率的情况下能够获得比现有功率分配方案更好的系统和速率与用户公平性。展开更多
基金supported by the National Natural Science Foundation of China(Grant No.70871082)the Shanghai Leading Academic Discipline Project,China(Grant No.S30504)
文摘This paper studies and predicts the number growth of China's mobile users by using the power-law regression. We find that the number growth of the mobile users follows a power law. Motivated by the data on the evolution of the mobile users, we consider scenarios of self-organization of accelerating growth networks into scale-free structures and propose a directed network model, in which the nodes grow following a power-law acceleration. The expressions for the transient and the stationary average degree distributions are obtained by using the Poisson process. This result shows that the model generates appropriate power-law connectivity distributions. Therefore, we find a power-law acceleration invariance of the scale-free networks. The numerical simulations of the models agree with the analytical results well.
基金supported by the National Natural Science Foundation of China under Grant No. 61501160supported by the Fundamental Research Funds for the Central Universities of China under Grant No. 2015HGCH0013
文摘To mitigate interference on celledge users and improve fairness of the whole system, dynamic inter-cell interference coordination(ICIC) is one of the promising solutions. However, traditional dynamic ICIC is considered as an NP-hard problem and power variability further adds another dimension to this joint optimization issue, making it even more difficult to quickly reach a near-optimal solution. Therefore, we theoretically obtain the closed-form expression of the near-optimal power allocation ratio for users in adjacent cells paired in the same resource block and interfere each other, so that the total utility corresponding to α-fairness is maximized. Dynamic ICIC using this closed-form solution could improve user fairness without causing an increment of the computational complexity. Numerical results show that, compared with the schemes using identical power for different users, our method does not obviously degrade the system's average spectral efficiency.
基金This project was supported bythe National Natural Science Foundation of China (60272079) the National High Technol-ogy Research and Development Plan Project of China (2001AA123014) .
文摘A power allocation scheme for multi-user multiple-input multiple-output orthogonal frequency division multiplexing (MI- MO-OFDM) systems with channel state information (CSI) on transmitter and receiver is pressed. Multi-user lower allocation can be decoupled into single user lower allocation throughout null space mapping of multi-user channel and lower allocation can be performed throughout spatial-spectral water-filling for per user.To deal with more users in system and fading correlation,scheduling is oerformed to maintain the gain of power allocation.The proposed scheme can substantially improve system's spectral efficiency with low complexity.Simulation results validate the accuracy of theoretic analyses.
文摘This paper outlined a Non-Orthogonal Multiple Access (NOMA) grouping transmission scheme for cognitive radio networks. To address the problems of small channel gain difference of the middle part users caused by the traditional far-near pairing algorithm, and the low transmission rate of the traditional Orthogonal Multiple Access (OMA) transmission, a joint pairing algorithm was proposed, which provided multiple pairing schemes according to the actual scene. Firstly, the secondary users were sorted according to their channel gain, and then different secondary user groups were divided, and the far-near pairing combined with (Uniform Channel Gain Difference (UCGD) algorithm was used to group the secondary users. After completing the user pairing, the power allocation problem was solved. Finally, the simulation data results showed that the proposed algorithm can effectively improve the system transmission rate.
文摘在基于非正交多址接入技术的多用户下行室内可见光通信(Visible light communication system based on non⁃orthogonal multiple access technology,VLC⁃NOMA)系统中,针对和速率与用户公平性冲突的问题,提出一种基于加权和速率最大化的迭代功率分配方案。该方案以最大化加权和速率为目标,可通过改变权重因子来调节用户公平性。由于目标问题属于非凸优化问题,通过辅助变量法和凸优化理论将该非凸问题转化为凹问题,再通过拉格朗日对偶法进行求解,并根据问题的解设计了一种迭代功率分配算法。对所提算法的收敛性、系统和速率以及用户公平性进行了仿真。结果表明,所提迭代功率分配算法具有良好的收敛性,相较于VLC⁃OMA系统,VLC⁃NOMA系统能够获得更好的和速率性能。通过调整权重因子,在牺牲较小系统和速率的情况下能够获得比现有功率分配方案更好的系统和速率与用户公平性。