The user’s intent to seek online information has been an active area of research in user profiling.User profiling considers user characteristics,behaviors,activities,and preferences to sketch user intentions,interest...The user’s intent to seek online information has been an active area of research in user profiling.User profiling considers user characteristics,behaviors,activities,and preferences to sketch user intentions,interests,and motivations.Determining user characteristics can help capture implicit and explicit preferences and intentions for effective user-centric and customized content presentation.The user’s complete online experience in seeking information is a blend of activities such as searching,verifying,and sharing it on social platforms.However,a combination of multiple behaviors in profiling users has yet to be considered.This research takes a novel approach and explores user intent types based on multidimensional online behavior in information acquisition.This research explores information search,verification,and dissemination behavior and identifies diverse types of users based on their online engagement using machine learning.The research proposes a generic user profile template that explains the user characteristics based on the internet experience and uses it as ground truth for data annotation.User feedback is based on online behavior and practices collected by using a survey method.The participants include both males and females from different occupation sectors and different ages.The data collected is subject to feature engineering,and the significant features are presented to unsupervised machine learning methods to identify user intent classes or profiles and their characteristics.Different techniques are evaluated,and the K-Mean clustering method successfully generates five user groups observing different user characteristics with an average silhouette of 0.36 and a distortion score of 1136.Feature average is computed to identify user intent type characteristics.The user intent classes are then further generalized to create a user intent template with an Inter-Rater Reliability of 75%.This research successfully extracts different user types based on their preferences in online content,platforms,criteria,and frequency.The study also validates the proposed template on user feedback data through Inter-Rater Agreement process using an external human rater.展开更多
This paper conducts a comprehensive review of existing research on Privacy by Design (PbD) and behavioral economics, explores the intersection of Privacy by Design (PbD) and behavioral economics, and how designers can...This paper conducts a comprehensive review of existing research on Privacy by Design (PbD) and behavioral economics, explores the intersection of Privacy by Design (PbD) and behavioral economics, and how designers can leverage “nudges” to encourage users towards privacy-friendly choices. We analyze the limitations of rational choice in the context of privacy decision-making and identify key opportunities for integrating behavioral economics into PbD. We propose a user-centered design framework for integrating behavioral economics into PbD, which includes strategies for simplifying complex choices, making privacy visible, providing feedback and control, and testing and iterating. Our analysis highlights the need for a more nuanced understanding of user behavior and decision-making in the context of privacy, and demonstrates the potential of behavioral economics to inform the design of more effective PbD solutions.展开更多
As social media and online activity continue to pervade all age groups, it serves as a crucial platform for sharing personal experiences and opinions as well as information about attitudes and preferences for certain ...As social media and online activity continue to pervade all age groups, it serves as a crucial platform for sharing personal experiences and opinions as well as information about attitudes and preferences for certain interests or purchases. This generates a wealth of behavioral data, which, while invaluable to businesses, researchers, policymakers, and the cybersecurity sector, presents significant challenges due to its unstructured nature. Existing tools for analyzing this data often lack the capability to effectively retrieve and process it comprehensively. This paper addresses the need for an advanced analytical tool that ethically and legally collects and analyzes social media data and online activity logs, constructing detailed and structured user profiles. It reviews current solutions, highlights their limitations, and introduces a new approach, the Advanced Social Analyzer (ASAN), that bridges these gaps. The proposed solutions technical aspects, implementation, and evaluation are discussed, with results compared to existing methodologies. The paper concludes by suggesting future research directions to further enhance the utility and effectiveness of social media data analysis.展开更多
Weather conditions play a pivotal role in embryo development and parental incubation costs,potentially impacting the clutch size and incubation behavior of birds.Understanding these effects is crucial for bird conserv...Weather conditions play a pivotal role in embryo development and parental incubation costs,potentially impacting the clutch size and incubation behavior of birds.Understanding these effects is crucial for bird conservation.Reeves’ s Pheasant(Syrmaticus reevesii) is a threatened species endemic to China,which is characterized by female-only incubation.However,there is a lack of information regarding the impact of weather conditions on clutch size and incubation behavior in this species.Using satellite tracking,we tracked 27 wild female Reeves’ s Pheasants from 2020 to 2023 in Hubei Province,China.We explored their clutch size and incubation behavior,as well as their responses to ambient temperature and precipitation.Clutch size averaged 7.75 ±1.36,had an association with average ambient temperature and average daily precipitation during the egglaying period,and was potentially linked to female breeding attempts.Throughout the incubation period,females took an average of 0.73 ±0.46 recesses every 24 h,with an average recess duration of 100.80 ±73.37 min and an average nest attendance of 92.98 ±5.27%.They showed a unimodal recess pattern in which nest departures peaked primarily between 13:00 and 16:00.Furthermore,females rarely left nests when daily precipitation was high.Recess duration and nest attendance were influenced by the interaction between daily mean ambient temperature and daily precipitation,as well as day of incubation.Additionally,there was a positive correlation between clutch size and recess duration.These results contribute valuable insights into the lifehistory features of this endangered species.展开更多
To enhance the Young’s modulus(E)and strength of titanium alloys,we designed titanium matrix composites with intercon-nected microstructure based on the Hashin-Shtrikman theory.According to the results,the in-situ re...To enhance the Young’s modulus(E)and strength of titanium alloys,we designed titanium matrix composites with intercon-nected microstructure based on the Hashin-Shtrikman theory.According to the results,the in-situ reaction yielded an interconnected microstructure composed of Ti_(2)C particles when the Ti_(2)C content reached 50vol%.With widths of 10 and 230 nm,the intraparticle Ti lamellae in the prepared composite exhibited a bimodal size distribution due to precipitation and the unreacted Ti phase within the grown Ti_(2)C particles.The composites with interconnected microstructure attained superior properties,including E of 174.3 GPa and ultimate flexural strength of 1014 GPa.Compared with that of pure Ti,the E of the composite was increased by 55% due to the high Ti_(2)C content and interconnected microstructure.The outstanding strength resulted from the strong interfacial bonding,load-bearing capacity of interconnected Ti_(2)C particles,and bimodal intraparticle Ti lamellae,which minimized the average crack driving force.Interrupted flexural tests revealed preferential crack initiation along the{001}cleavage plane and grain boundary of Ti_(2)C in the region with the highest tensile stress.In addition,the propagation can be efficiently inhibited by interparticle Ti grains,which prevented the brittle fracture of the composites.展开更多
This study examines the database search behaviors of individuals, focusing on gender differences and the impact of planning habits on information retrieval. Data were collected from a survey of 198 respondents, catego...This study examines the database search behaviors of individuals, focusing on gender differences and the impact of planning habits on information retrieval. Data were collected from a survey of 198 respondents, categorized by their discipline, schooling background, internet usage, and information retrieval preferences. Key findings indicate that females are more likely to plan their searches in advance and prefer structured methods of information retrieval, such as using library portals and leading university websites. Males, however, tend to use web search engines and self-archiving methods more frequently. This analysis provides valuable insights for educational institutions and libraries to optimize their resources and services based on user behavior patterns.展开更多
As e-commerce continues to mature,the advantages of live streaming within the industry have become increasingly apparent,offering significant growth opportunities.Social e-commerce platforms,which are user-centered,in...As e-commerce continues to mature,the advantages of live streaming within the industry have become increasingly apparent,offering significant growth opportunities.Social e-commerce platforms,which are user-centered,integrate social networks with e-commerce by leveraging social interactions to drive product sales and enhance the overall consumer shopping experience.This type of e-commerce fosters engagement and promotes products by merging online communities with shopping behavior,creating a more interactive and dynamic marketplace.It not only retains the traditional e-commerce trading and marketing functions but also adds a social dimension,making live stream anchors crucial figures connecting consumers with products.These anchors can attract consumers with their appearance and charm,and use their expertise on live streaming platforms to guide consumers by recommending live content.They can also interact with their audiences and potentially influence them to purchase the recommended goods.It is evident that the attributes of anchors in live streaming rooms significantly impact consumers’online behavior.Therefore,researching how platform contextual factors regulate consumers’online behavior is of great practical significance.This study employs multilevel regression analysis to support its hypotheses using data.The findings indicate that contextual factors of the platform significantly influence online behavior,enhancing the positive relationship between user attachment and online activities.展开更多
Under the background of the all-round deepening of quality education,the cultivation of comprehensive quality has become the main theme of contemporary education reform.Good behavior and habits are of great significan...Under the background of the all-round deepening of quality education,the cultivation of comprehensive quality has become the main theme of contemporary education reform.Good behavior and habits are of great significance to children’s future learning,growth,and development.Through literature review and other methods,this paper analyzes the current situation of children’s family education and the influence of family education on the cultivation of children’s behavioral habits and provides some strategies for cultivating children’s good behavioral habits in family education.展开更多
This paper proposes a novel framework to detect cyber-attacks using Machine Learning coupled with User Behavior Analytics.The framework models the user behavior as sequences of events representing the user activities ...This paper proposes a novel framework to detect cyber-attacks using Machine Learning coupled with User Behavior Analytics.The framework models the user behavior as sequences of events representing the user activities at such a network.The represented sequences are thenfitted into a recurrent neural network model to extract features that draw distinctive behavior for individual users.Thus,the model can recognize frequencies of regular behavior to profile the user manner in the network.The subsequent procedure is that the recurrent neural network would detect abnormal behavior by classifying unknown behavior to either regu-lar or irregular behavior.The importance of the proposed framework is due to the increase of cyber-attacks especially when the attack is triggered from such sources inside the network.Typically detecting inside attacks are much more challenging in that the security protocols can barely recognize attacks from trustful resources at the network,including users.Therefore,the user behavior can be extracted and ultimately learned to recognize insightful patterns in which the regular patterns reflect a normal network workflow.In contrast,the irregular patterns can trigger an alert for a potential cyber-attack.The framework has been fully described where the evaluation metrics have also been introduced.The experimental results show that the approach performed better compared to other approaches and AUC 0.97 was achieved using RNN-LSTM 1.The paper has been concluded with pro-viding the potential directions for future improvements.展开更多
The e-mail network is a type of social network. This study analyzes user behavior in e-mail subject participation in organizations by using social network analysis. First, the Enron dataset and the position-related in...The e-mail network is a type of social network. This study analyzes user behavior in e-mail subject participation in organizations by using social network analysis. First, the Enron dataset and the position-related information of an employee are introduced, and methods for deletion of false data are presented. Next, the three-layer model(User, Subject, Keyword) is proposed for analysis of user behavior. Then, the proposed keyword selection algorithm based on a greedy approach, and the influence and propagation of an e-mail subject are defined. Finally, the e-mail user behavior is analyzed for the Enron organization. This study has considerable significance in subject recommendation and character recognition.展开更多
This paper explores the uses’ influences on microblog. At first, according to the social network theory, we present an analysis of information transmitting network structure based on the relationship of following and...This paper explores the uses’ influences on microblog. At first, according to the social network theory, we present an analysis of information transmitting network structure based on the relationship of following and followed phenomenon of microblog users. Informed by the microblog user behavior analysis, the paper also addresses a model for calculating weights of users’ influence. It proposes a U-R model, using which we can evaluate users’ influence based on PageRank algorithms and analyzes user behaviors. In the U-R model, the effect of user behaviors is explored and PageRank is applied to evaluate the importance and the influence of every user in a microblog network by repeatedly iterating their own U-R value. The users’ influences in a microblog network can be ranked by the U-R value. Finally, the validity of U-R model is proved with a real-life numerical example.展开更多
In order to inhibit Free Riding in Peer-toPeer(P2P) file-sharing systems,the Free Riding Inhibition Mechanism Based on User Behavior(IMBUB) is proposed.IMBUB considers the regularity of user behavior and models user b...In order to inhibit Free Riding in Peer-toPeer(P2P) file-sharing systems,the Free Riding Inhibition Mechanism Based on User Behavior(IMBUB) is proposed.IMBUB considers the regularity of user behavior and models user behavior by analyzing many definitions and formulas.In IMBUB,Bandwidth Allocated Ratio,Incentive Mechanism Based on User Online Time,Double Reward Mechanism,Incentive Mechanism of Sharing for Permission and Inhibition Mechanism of White-washing Behavior are put forward to inhibit Free Riding and encourage user sharing.A P2P file system BITShare is designed and realized under the conditions of a campus network environment.The test results show that BITShare's Query Hit Ratio has a significant increase from 22% to 99%,and the sharing process in BITShare is very optimistic.Most users opt to use online time to exchange service quality instead of white-washing behavior,and the real white-ishing ratio in BITShare is lower than 1%.We confirm that IMBUB can effectively inhibit Free Riding behavior in P2P file-sharing systems.展开更多
To meet the needs of today’s library users,institutions are developing library mobile apps(LMAs),as their libraries are increasingly intelligent and rely on deep learning.This paper explores the influencing factors a...To meet the needs of today’s library users,institutions are developing library mobile apps(LMAs),as their libraries are increasingly intelligent and rely on deep learning.This paper explores the influencing factors and differences in the perception of LMAs at different time points after a user has downloaded an LMA.A research model was constructed based on the technology acceptance model.A questionnaire was designed and distributed twice to LMA users with an interval of three months to collect dynamic data.The analysis was based on structural equation modeling.The empirical results show that the perceived ease of use,the perceived usefulness,the social influence,and the facilitating conditions affected the users’behavioral intention,but their impacts were different at different times.As the usage time increases,the technology acceptance model is still universal for understanding the user perception of LMA.In addition,two extended variables(social impact and convenience)also affect the user’s behavior intention.User behavior is dynamic and changed over time.This study is important both theoretically and practically,as the results could be used to improve the service quality of LMAs and reduce the loss rate of users.Its findings may help the designers and developers of LMAs to optimize them from the perspective of a user and improve the service experience by providing a deeper understanding of the adoption behavior of information systems by LMA users.展开更多
文摘The user’s intent to seek online information has been an active area of research in user profiling.User profiling considers user characteristics,behaviors,activities,and preferences to sketch user intentions,interests,and motivations.Determining user characteristics can help capture implicit and explicit preferences and intentions for effective user-centric and customized content presentation.The user’s complete online experience in seeking information is a blend of activities such as searching,verifying,and sharing it on social platforms.However,a combination of multiple behaviors in profiling users has yet to be considered.This research takes a novel approach and explores user intent types based on multidimensional online behavior in information acquisition.This research explores information search,verification,and dissemination behavior and identifies diverse types of users based on their online engagement using machine learning.The research proposes a generic user profile template that explains the user characteristics based on the internet experience and uses it as ground truth for data annotation.User feedback is based on online behavior and practices collected by using a survey method.The participants include both males and females from different occupation sectors and different ages.The data collected is subject to feature engineering,and the significant features are presented to unsupervised machine learning methods to identify user intent classes or profiles and their characteristics.Different techniques are evaluated,and the K-Mean clustering method successfully generates five user groups observing different user characteristics with an average silhouette of 0.36 and a distortion score of 1136.Feature average is computed to identify user intent type characteristics.The user intent classes are then further generalized to create a user intent template with an Inter-Rater Reliability of 75%.This research successfully extracts different user types based on their preferences in online content,platforms,criteria,and frequency.The study also validates the proposed template on user feedback data through Inter-Rater Agreement process using an external human rater.
文摘This paper conducts a comprehensive review of existing research on Privacy by Design (PbD) and behavioral economics, explores the intersection of Privacy by Design (PbD) and behavioral economics, and how designers can leverage “nudges” to encourage users towards privacy-friendly choices. We analyze the limitations of rational choice in the context of privacy decision-making and identify key opportunities for integrating behavioral economics into PbD. We propose a user-centered design framework for integrating behavioral economics into PbD, which includes strategies for simplifying complex choices, making privacy visible, providing feedback and control, and testing and iterating. Our analysis highlights the need for a more nuanced understanding of user behavior and decision-making in the context of privacy, and demonstrates the potential of behavioral economics to inform the design of more effective PbD solutions.
文摘As social media and online activity continue to pervade all age groups, it serves as a crucial platform for sharing personal experiences and opinions as well as information about attitudes and preferences for certain interests or purchases. This generates a wealth of behavioral data, which, while invaluable to businesses, researchers, policymakers, and the cybersecurity sector, presents significant challenges due to its unstructured nature. Existing tools for analyzing this data often lack the capability to effectively retrieve and process it comprehensively. This paper addresses the need for an advanced analytical tool that ethically and legally collects and analyzes social media data and online activity logs, constructing detailed and structured user profiles. It reviews current solutions, highlights their limitations, and introduces a new approach, the Advanced Social Analyzer (ASAN), that bridges these gaps. The proposed solutions technical aspects, implementation, and evaluation are discussed, with results compared to existing methodologies. The paper concludes by suggesting future research directions to further enhance the utility and effectiveness of social media data analysis.
基金supported by the National Natural Science Foundation of China (grant number 31872240)。
文摘Weather conditions play a pivotal role in embryo development and parental incubation costs,potentially impacting the clutch size and incubation behavior of birds.Understanding these effects is crucial for bird conservation.Reeves’ s Pheasant(Syrmaticus reevesii) is a threatened species endemic to China,which is characterized by female-only incubation.However,there is a lack of information regarding the impact of weather conditions on clutch size and incubation behavior in this species.Using satellite tracking,we tracked 27 wild female Reeves’ s Pheasants from 2020 to 2023 in Hubei Province,China.We explored their clutch size and incubation behavior,as well as their responses to ambient temperature and precipitation.Clutch size averaged 7.75 ±1.36,had an association with average ambient temperature and average daily precipitation during the egglaying period,and was potentially linked to female breeding attempts.Throughout the incubation period,females took an average of 0.73 ±0.46 recesses every 24 h,with an average recess duration of 100.80 ±73.37 min and an average nest attendance of 92.98 ±5.27%.They showed a unimodal recess pattern in which nest departures peaked primarily between 13:00 and 16:00.Furthermore,females rarely left nests when daily precipitation was high.Recess duration and nest attendance were influenced by the interaction between daily mean ambient temperature and daily precipitation,as well as day of incubation.Additionally,there was a positive correlation between clutch size and recess duration.These results contribute valuable insights into the lifehistory features of this endangered species.
基金financially supported by the National Key R&D Program of China(No.2021YFB3701203)the National Natural Science Foundation of China(Nos.U22A20113,52201116,52071116,and 52261135543)+1 种基金Heilongjiang Touyan Team ProgramChina Postdoctoral Science Foundation(No.2022M710939).
文摘To enhance the Young’s modulus(E)and strength of titanium alloys,we designed titanium matrix composites with intercon-nected microstructure based on the Hashin-Shtrikman theory.According to the results,the in-situ reaction yielded an interconnected microstructure composed of Ti_(2)C particles when the Ti_(2)C content reached 50vol%.With widths of 10 and 230 nm,the intraparticle Ti lamellae in the prepared composite exhibited a bimodal size distribution due to precipitation and the unreacted Ti phase within the grown Ti_(2)C particles.The composites with interconnected microstructure attained superior properties,including E of 174.3 GPa and ultimate flexural strength of 1014 GPa.Compared with that of pure Ti,the E of the composite was increased by 55% due to the high Ti_(2)C content and interconnected microstructure.The outstanding strength resulted from the strong interfacial bonding,load-bearing capacity of interconnected Ti_(2)C particles,and bimodal intraparticle Ti lamellae,which minimized the average crack driving force.Interrupted flexural tests revealed preferential crack initiation along the{001}cleavage plane and grain boundary of Ti_(2)C in the region with the highest tensile stress.In addition,the propagation can be efficiently inhibited by interparticle Ti grains,which prevented the brittle fracture of the composites.
文摘This study examines the database search behaviors of individuals, focusing on gender differences and the impact of planning habits on information retrieval. Data were collected from a survey of 198 respondents, categorized by their discipline, schooling background, internet usage, and information retrieval preferences. Key findings indicate that females are more likely to plan their searches in advance and prefer structured methods of information retrieval, such as using library portals and leading university websites. Males, however, tend to use web search engines and self-archiving methods more frequently. This analysis provides valuable insights for educational institutions and libraries to optimize their resources and services based on user behavior patterns.
文摘As e-commerce continues to mature,the advantages of live streaming within the industry have become increasingly apparent,offering significant growth opportunities.Social e-commerce platforms,which are user-centered,integrate social networks with e-commerce by leveraging social interactions to drive product sales and enhance the overall consumer shopping experience.This type of e-commerce fosters engagement and promotes products by merging online communities with shopping behavior,creating a more interactive and dynamic marketplace.It not only retains the traditional e-commerce trading and marketing functions but also adds a social dimension,making live stream anchors crucial figures connecting consumers with products.These anchors can attract consumers with their appearance and charm,and use their expertise on live streaming platforms to guide consumers by recommending live content.They can also interact with their audiences and potentially influence them to purchase the recommended goods.It is evident that the attributes of anchors in live streaming rooms significantly impact consumers’online behavior.Therefore,researching how platform contextual factors regulate consumers’online behavior is of great practical significance.This study employs multilevel regression analysis to support its hypotheses using data.The findings indicate that contextual factors of the platform significantly influence online behavior,enhancing the positive relationship between user attachment and online activities.
文摘Under the background of the all-round deepening of quality education,the cultivation of comprehensive quality has become the main theme of contemporary education reform.Good behavior and habits are of great significance to children’s future learning,growth,and development.Through literature review and other methods,this paper analyzes the current situation of children’s family education and the influence of family education on the cultivation of children’s behavioral habits and provides some strategies for cultivating children’s good behavioral habits in family education.
基金supported by the fund received from Al Baha University,8/1440.
文摘This paper proposes a novel framework to detect cyber-attacks using Machine Learning coupled with User Behavior Analytics.The framework models the user behavior as sequences of events representing the user activities at such a network.The represented sequences are thenfitted into a recurrent neural network model to extract features that draw distinctive behavior for individual users.Thus,the model can recognize frequencies of regular behavior to profile the user manner in the network.The subsequent procedure is that the recurrent neural network would detect abnormal behavior by classifying unknown behavior to either regu-lar or irregular behavior.The importance of the proposed framework is due to the increase of cyber-attacks especially when the attack is triggered from such sources inside the network.Typically detecting inside attacks are much more challenging in that the security protocols can barely recognize attacks from trustful resources at the network,including users.Therefore,the user behavior can be extracted and ultimately learned to recognize insightful patterns in which the regular patterns reflect a normal network workflow.In contrast,the irregular patterns can trigger an alert for a potential cyber-attack.The framework has been fully described where the evaluation metrics have also been introduced.The experimental results show that the approach performed better compared to other approaches and AUC 0.97 was achieved using RNN-LSTM 1.The paper has been concluded with pro-viding the potential directions for future improvements.
基金sponsored by the National Natural Science Foundation of China under grant number No.61100008,61201084the China Postdoctoral Science Foundation under Grant No.2013M541346+3 种基金Heilongiiang Postdoctoral Special Fund(Postdoctoral Youth Talent Program)under Grant No.LBH-TZ0504Heilongjiang Postdoctoral Fund under Grant No.LBH-Z13058the Natural Science Foundation of Heilongjiang Province of China under Grant No.QC2015076The Fundamental Research Funds for the Central Universities of China under grant number HEUCF100602
文摘The e-mail network is a type of social network. This study analyzes user behavior in e-mail subject participation in organizations by using social network analysis. First, the Enron dataset and the position-related information of an employee are introduced, and methods for deletion of false data are presented. Next, the three-layer model(User, Subject, Keyword) is proposed for analysis of user behavior. Then, the proposed keyword selection algorithm based on a greedy approach, and the influence and propagation of an e-mail subject are defined. Finally, the e-mail user behavior is analyzed for the Enron organization. This study has considerable significance in subject recommendation and character recognition.
文摘This paper explores the uses’ influences on microblog. At first, according to the social network theory, we present an analysis of information transmitting network structure based on the relationship of following and followed phenomenon of microblog users. Informed by the microblog user behavior analysis, the paper also addresses a model for calculating weights of users’ influence. It proposes a U-R model, using which we can evaluate users’ influence based on PageRank algorithms and analyzes user behaviors. In the U-R model, the effect of user behaviors is explored and PageRank is applied to evaluate the importance and the influence of every user in a microblog network by repeatedly iterating their own U-R value. The users’ influences in a microblog network can be ranked by the U-R value. Finally, the validity of U-R model is proved with a real-life numerical example.
基金This work was partly supported by 2012 Outstanding Talents Project of Beijing Organization Department under Grant No.2012D00501700005,Science and Technology Project of Beijing Municipal Education Commission under Grant No.KM201110016006,National Natural Science Foundation of China under Grant No.61100205
文摘In order to inhibit Free Riding in Peer-toPeer(P2P) file-sharing systems,the Free Riding Inhibition Mechanism Based on User Behavior(IMBUB) is proposed.IMBUB considers the regularity of user behavior and models user behavior by analyzing many definitions and formulas.In IMBUB,Bandwidth Allocated Ratio,Incentive Mechanism Based on User Online Time,Double Reward Mechanism,Incentive Mechanism of Sharing for Permission and Inhibition Mechanism of White-washing Behavior are put forward to inhibit Free Riding and encourage user sharing.A P2P file system BITShare is designed and realized under the conditions of a campus network environment.The test results show that BITShare's Query Hit Ratio has a significant increase from 22% to 99%,and the sharing process in BITShare is very optimistic.Most users opt to use online time to exchange service quality instead of white-washing behavior,and the real white-ishing ratio in BITShare is lower than 1%.We confirm that IMBUB can effectively inhibit Free Riding behavior in P2P file-sharing systems.
文摘To meet the needs of today’s library users,institutions are developing library mobile apps(LMAs),as their libraries are increasingly intelligent and rely on deep learning.This paper explores the influencing factors and differences in the perception of LMAs at different time points after a user has downloaded an LMA.A research model was constructed based on the technology acceptance model.A questionnaire was designed and distributed twice to LMA users with an interval of three months to collect dynamic data.The analysis was based on structural equation modeling.The empirical results show that the perceived ease of use,the perceived usefulness,the social influence,and the facilitating conditions affected the users’behavioral intention,but their impacts were different at different times.As the usage time increases,the technology acceptance model is still universal for understanding the user perception of LMA.In addition,two extended variables(social impact and convenience)also affect the user’s behavior intention.User behavior is dynamic and changed over time.This study is important both theoretically and practically,as the results could be used to improve the service quality of LMAs and reduce the loss rate of users.Its findings may help the designers and developers of LMAs to optimize them from the perspective of a user and improve the service experience by providing a deeper understanding of the adoption behavior of information systems by LMA users.