The Three Gorges project accelerates economic development in the Three Gorges Reservoir Area.This paper aimed to investigate the distribution,changes and features of cultivated land in this area,analyze the forces dri...The Three Gorges project accelerates economic development in the Three Gorges Reservoir Area.This paper aimed to investigate the distribution,changes and features of cultivated land in this area,analyze the forces driving the changes in cultivated land area,and propose the countermeasures for cultivated land management.Transition matrix was used to analyze the features of cultivated land changes,and quantitative analysis and qualitative analysis were adopted to research the driving forces according to the features of cultivated land changes.Cultivated land in the Three Gorges Reservoir Area mainly lay to the northwest of the Yangtze River,especially the upper reaches.The areas of cultivated land increased from 1996 to 1999,then decreased from 2000 to 2006,and finally increased again from 2007 to 2009.The important forces driving changes in cultivated land included government policies,employment and food security,increasing construction land,agriculture structure adjustment,land rearrangement,inundation.During cultivated land management,firstly,it is necessary to insist on the principle of cultivated land protection,standardize land exploitation and strictly restrict the transformation of cultivated land into non-farming land.Secondly,land rearrangement must be implemented,which can not only increase the area of the cultivated land,but also improve the quality of the cultivated land.Thirdly,it is feasible to intensify eco-agriculture construction to increase the quantity and quality of cultivated land.Fourthly,it is helpful to improve the traditional agriculture production methods to promote cultivated land quality.Lastly,it is important to propagandize cultivated land protection and realize the enormous pressure of cultivated land shortage,making more people obligated to protect cultivated land.展开更多
River water plays a key role in human health, and in social and economic development, and is often affected by both natural factors and human activities. An in-depth understanding of the role of these factors can help...River water plays a key role in human health, and in social and economic development, and is often affected by both natural factors and human activities. An in-depth understanding of the role of these factors can help in developing an effective catchment management strategy to protect precious water resources. This study analyzed river water quality, patterns of terrestrial and riparian ecosystems, intensity of agricultural activities, industrial structure, and spatial distribution of pollutant emissions in the Haihe River Basin in China for the year of 2010, identifying the variables that have the greatest impact on river water quality. The area percentage of farmland in study area, the percentage of natural vegetation cover in the 1000-m riparian zone, rural population density, industrial Gross Domestic Product(GDP)/km^2, and industrial amino nitrogen emissions were all significantly correlated with river water quality(P < 0.05). Farming had the largest impact on river water quality, explaining 43.0% of the water quality variance, followed by the coverage of natural vegetation in the 1000-m riparian zone, which explained 36.2% of the water quality variance. Industrial amino nitrogen emissions intensity and rural population density explained 31.6% and 31.4% of the water quality variance, respectively, while industrial GDP/km^2 explained 26.6%. Together, these five indicators explained 67.3% of the total variance in water quality. Consequently, water environmental management of the Haihe River Basin should focus on adjusting agricultural activities, conserving riparian vegetation, and reducing industrial pollutant emissions by optimizing industrial structure. The results demonstrate how human activities drive the spatial pattern changes of river water quality, and they can provide reference for developing land use guidelines and for prioritizing management practices to maintain stream water quality in a large river basin.展开更多
Understanding of how combinations of agronomic options can be used to improve the grain yield and nitrogen use efficiency(NUE) of winter wheat is limited. A three-year experiment involving four integrated management...Understanding of how combinations of agronomic options can be used to improve the grain yield and nitrogen use efficiency(NUE) of winter wheat is limited. A three-year experiment involving four integrated management strategies was conducted from 2013 to 2015 in Tai'an, Shandong Province, China, to evaluate changes in grain yield and NUE. The integrated management treatments were as follows: current practice(T1); improvement of current practice(T2); high-yield management(T3), which aimed to maximize grain yield regardless of the cost of resource inputs; and integrated soil and crop system management(T4) with a higher seeding rate, delayed sowing date, and optimized nutrient management. Seeding rates increased by 75 seeds m^-2 with each treatment from T1(225 seeds m^-2) to T4(450 seeds m^-2). The sowing dates were delayed from T1(5 th Oct.) to T2 and T3(8 th Oct.), and to T4 treatment(12 th Oct.). T1, T2, T3, and T4 received 315, 210, 315, and 240 kg N ha^-1, 120, 90, 210 and 120 kg P2O5 ha^-1, 30, 75, 90, and 45 kg K2O ha^-1, respectively. The ratio of basal application to topdressing for T1, T2, T3, and T4 was 6:4, 5:5, 4:6, and 4:6, respectively, with the N topdressing applied at regreening for T1 and at jointing stage for T2, T3, and T4. The P fertilizers in all treatments were applied as basal fertilizer. The K fertilizer for T1 and T2 was applied as basal fertilizer while the ratio of basal application to topdressing(at jointing stage) of K fertilizer for both T3 and T4 was 6:4. T1, T2, T3, and T4 were irrigated five, four, four and three times, respectively. Treatment T3 produced the highest grain yield among all treatments over three years and the average yield was 9 277.96 kg ha^-1. Grain yield averaged across three years with the T4 treatment(8 892.93 kg ha^-1) was 95.85% of that with T3 and was 21.72 and 6.10% higher than that with T1(7 305.95 kg ha^-1) and T2(8 381.41 kg ha^-1), respectively. Treatment T2 produced the highest NUE of all the integrated treatments. The NUE with T4 was 95.36% of that with T2 and was 51.91 and 25.62% higher than that with T1 and T3, respectively. The N uptake efficiency(UPE) averaged across three years with T4 was 50.75 and 16.62% higher than that with T1and T3, respectively. The N utilization efficiency(UTE) averaged across three years with T4 was 7.74% higher than that with T3. The increased UPE with T4 compared with T3 could be attributed mostly to the lower available N in T4, while the increased UTE with T4 was mainly due to the highest N harvest index and low grain N concentration, which consequently led to improved NUE. The net profit for T4 was the highest among four treatments and was 174.94, 22.27, and 28.10% higher than that for T1, T2, and T3, respectively. Therefore, the T4 treatment should be a recommendable management strategy to obtain high grain yield, high NUE, and high economic benefits in the target region, although further improvements of NUE are required.展开更多
Nonpoint source(NPS)pollutants resulting from land degradation(LD)have been a key influential factor on the deterioration of water quality.Consequently,sustainable land use management(SLM)practices have been employed ...Nonpoint source(NPS)pollutants resulting from land degradation(LD)have been a key influential factor on the deterioration of water quality.Consequently,sustainable land use management(SLM)practices have been employed to reduce the impacts of LD globally.However,the adoption of SLM practices is often not effective to protect water resources despite its capability of improving water quality.Empirically,evidence shows that activities of land users directly influence SLM practices and NPS pollution of water resources in watersheds,but invariably this has not been clearly understood.Understanding how SLM practices adoption could prevent NPS pollution of water resources in watershed is a necessity.Therefore,the primary aim of the investigation is to comprehend the status of SLM practices with the legal framework supporting the adoption of such practices in the Ashi River watershed.A survey instrument involving structured questionnaire was implemented to collect data.A randomly based lottery method was applied to sample information from 150 land users in two control units’communities.Descriptive and inferential statistics was used to analyze the data.This research revealed that there is low adoption of SLM practices of the study site.The low adoption is due to weak capacity building and enforcement of regulations in the watershed.Occupation and age of the residents are the strongest predictors of SLM adoption rate.Residents connected with farming are more sensitive to the adoption status of SLM.It is our recommendation that policy makers should ensure capacity building,and enforcement of regulations can specifically compel farmers to adopt SLM technologies.This approach would complement other strategies to solve the NPS pollution issue of Ashi River.展开更多
Uncertainty in determining optimum conjunctive water use lies not only on variability of hydrological cycle and climate but also on lack of adequate data and perfect knowledge about groundwater-surface water system in...Uncertainty in determining optimum conjunctive water use lies not only on variability of hydrological cycle and climate but also on lack of adequate data and perfect knowledge about groundwater-surface water system interactions, errors in historic data and inherent variability of system parameters both in space and time. Simulation-optimization models are used for conjunctive water use management under uncertain conditions. However, direct application of such approach whereby all realizations are considered at every-iteration of the optimization process leads to a highly computational time-consuming optimization problem as the number of realizations increases. Hence, this study proposes a novel approach—a Retrospective Optimization Approximation (ROA) approach. In this approach, a simulation model was used to determine aquifer system responses (draw-downs) which were assembled as response matrices and incorporated in the optimization model (procedure) as coefficients in the constraints. The sample optimization sub-problems generated, were solved and analyzed through ROA-Active-Set procedure implemented under MATLAB code. The ROA-Active Set procedure solves and evaluates a sequence of sample path optimization sub-problems in an increasing number of realizations. The methodology was applied to a real-world conjunctive water use management problem found in Great Letaba River basin, South Africa. In the River basin, surface water source contributes 87% of the existing un-optimized total conjunctive water use withdrawal rate (6512.04 m<sup>3</sup>/day) and the remaining 13% is contributed by groundwater source. Through ROA approach, results indicate that the optimum percentages contribution of the surface and subsurface sources to the total water demand are 58% and 42% respectively. This implies that the existing percentage contribution can be increased or reduced by ±29% that is groundwater source can be increased by 29% while the surface water source contribution can be reduced by 29%. This reveals that the existing conjunctive water use practice is unsustainable wherein surface water system is overstressed while groundwater system is under-utilized. Through k-means sampling technique ROA-Active Set procedure was able to attain a converged maximum expected total optimum conjunctive water use withdrawal rate of 4.35 × 10<sup>4</sup> m<sup>3</sup>/day within a relatively few numbers of iterations (6 to 8 iterations) in about 2.30 Hrs. In conclusion, results demonstrated that ROA approach is capable of managing real-world regional aquifers sustainable conjunctive water use practice under hydro-geological uncertainty conditions.展开更多
Terrestrial ecosystems represent the second largest carbon reservoir, and the C balance in terrestrial ecosystems can be directly impacted by human activities such as agricultural management practices and land-use cha...Terrestrial ecosystems represent the second largest carbon reservoir, and the C balance in terrestrial ecosystems can be directly impacted by human activities such as agricultural management practices and land-use changes. This paper focuses on the C-sequestration in soil. Although many studies showed that the concentration of SOC is much higher in the shallow soils (0-30 cm), the deeper horizons represent a much greater mass of soil and represent a huge C-storage pool. The process of preferential retention of more strongly adsorbing components, along with competitive displacement of weakly binding components are the key processes that enhance the movement of organic carbon to deeper soil horizons. DOC represents the most dynamic part of organic carbon in soils, and thus can be used as a timely indicator of the short-term change of C-sequestration. Long-term experiments have demonstrated that higher SOC levels in shallow soils would lead to increased fluxes of DOC to deeper horizons, but more data on a wider range of soils and treatment strategies are needed to fully evaluate the linkages between changes in SOC in shallow soil, vertical fluxes of DOC to deeper soil horizons, and enhanced C-inventories in deeper, slow-turnover SOC pools.展开更多
A number of very serious drough disasters occurred in many regions of Aftica during past 30 years. It is commonly considered that they are among the most serious disasters after the World War II. The basic situation o...A number of very serious drough disasters occurred in many regions of Aftica during past 30 years. It is commonly considered that they are among the most serious disasters after the World War II. The basic situation of the droughs and drough disasters are introduced briefly, and the main causes resulting 1i drought disasters are analysed in the paper. The lack of rainfall is one of the factors producing the drough disasters in Africa, but it is not the real one. From environmental viewpoints, the drough disasters in Africa resulted from unsuitable land use and management by man, and in essence they are the results of man-made environmental disturbance. Finally, the strategy for preventing drought disasters in Africa is suggested.展开更多
While living in the century of crisis (of energy and water), more focus should be given on renewable energy. Since Kosovo is more limited in hydro-energy resources than the neighboring countries, it is essential to ...While living in the century of crisis (of energy and water), more focus should be given on renewable energy. Since Kosovo is more limited in hydro-energy resources than the neighboring countries, it is essential to study them and put to use more efficiently. Subject of this study is Istog spring as it is the most important spring of Mokra Gora together with Vrella and White Drino. The spring is analyzed as a complex resource on water economy providing: fish (trout), potable water, water for irrigation and hydro-energy (currently not in function). The focus of the study remains the hydro-energetic component, not just a revitalization process but as an upgrade of the existing facility to increase the capacity by 2-3 times. This study is based on information selection and processing regarding detailed technical and economic analysis providing a method for other springs that will be studied in the future. Two technical solutions to the problem are provided as the best economical and technical solution. Solution I has one level and a calculated flow of 7.5 m^3/s and consists generally of renovation works on existing facilities; Solution 2 plans the construction of another level 3 m lower than the existing one, increasing so both the hydro-power capacity and implementation cost for the project Both solutions provide little to no impact on the spring main attributes. The valley ecology will not be influenced because the water after HPP (Hydro Power Plant) will be flowing in its own bed. After this study, Istog spring will be more attractive to donors and will contribute in improvement of energetic structure in Kosovo that for the time being is poor in hydro component.展开更多
Cheetahs and other apex predators are threatened by human-wildlife conflict and habitat degradation. Bush encroachment creates one of the biggest forms of habitat change, thus it is important to understand the impact ...Cheetahs and other apex predators are threatened by human-wildlife conflict and habitat degradation. Bush encroachment creates one of the biggest forms of habitat change, thus it is important to understand the impact this has on habitat use. We investigated habitat preferences of five male cheetahs in Namibian farmlands degraded by bush encroachment. Cheetahs were tracked using satellite based Global System for Mobile (GSM) collars providing a higher resolution on ranging behavior. We aimed to investigate: 1) habitat characteristics;2) evidence for habitat selection;3) temporal activity partitioning;and 4) whether revisits to locations were related to habitat type. There were differences in habitat characteristics, showing that cheetahs were able to utilise different habitats. Fecal pellet counts revealed that warthog, oryx, scrub hare and kudu were most abundant. The cheetahs spent more time in high visibility shrubland, suggesting they selected rewarding patches within predominantly bush-encroached landscapes. The usage in marginal habitat was strikingly influenced by habitat type, with both previously cleared and open vegetated areas showing high proportions in edge use. Individuals exhibited significant temporal activity partitioning, showing peaks between late afternoon and early morning hours. This finding could be key to managing human-wildlife conflict by showing that increased protection such as the use of herders and livestock guarding dogs should be used as mitigation methods to minimize the impact of cheetah specific temporal patterns at all times as defined in this research. Visits to the same locations were not correlated to habitat type;revisits may be dictated by other reasons such as social interaction, prey density or avoidance of other predators. Findings from this study will help build existing knowledge on the effects bush encroachment has on cheetah habitat preference.展开更多
Background:Land use change plays a vital role in global carbon dynamics.Understanding land use change impact on soil carbon stock is crucial for implementing land use management to increase carbon stock and reducing c...Background:Land use change plays a vital role in global carbon dynamics.Understanding land use change impact on soil carbon stock is crucial for implementing land use management to increase carbon stock and reducing carbon emission.Therefore,the objective of our study was to determine land use change and to assess its effect on soil carbon stock in semi-arid part of Rajasthan,India.Landsat temporal satellite data of Pushkar valley region of Rajasthan acquired on 1993,2003,and 2014 were analyzed to assess land use change.Internal trading of land use was depicted throughmatrices.Soil organic carbon(SOC)stock was calculated for soil to a depth of 30 cm in each land use type in 2014 using field data collection.The SOC stock for previous years was estimated using stock change factor.The effect of land use change on SOC stock was determined by calculating change in SOC stock(t/ha)by deducting the base-year SOC stock from the final year stock of a particular land use conversion.Results:The total area under agricultural lands was increased by 32.14%while that under forest was decreased by 23.14%during the time period of 1993–2014.Overall land use change shows that in both the periods(1993–2003 and 2003–2014),7%of forest area was converted to agricultural land and about 15%changes occurred among agricultural land.In 1993–2003,changes among agricultural land led to maximum loss of soil carbon,i.e.,4.88 Mt C and during 2003–2014,conversion of forest to agricultural land led to loss in 3.16 Mt C.Conclusion:There was a continuous decrease in forest area and increase in cultivated area in each time period.Land use change led to alteration in carbon equity in soil due to change or loss in vegetation.Overall,we can conclude that the internal trading of land use area during the 10-year period(1993–2003)led to net loss of SOC stock by 8.29 Mt C.Similarly,land use change during 11-year period(2003–2014)caused net loss of SOC by 2.76 Mt C.Efforts should be made to implement proper land use management practices to enhance the SOC content.展开更多
On May 8,2017,the Measures for Management of Land Use Master Plan was released for enforcement by the Ministry of Land and Resources.The Measures clearly points out that a land use master plan is an essential part of ...On May 8,2017,the Measures for Management of Land Use Master Plan was released for enforcement by the Ministry of Land and Resources.The Measures clearly points out that a land use master plan is an essential part of the national spatial planning system and an important basis for implementing land use modes control and management,展开更多
The number of GIAHS sites is increasing these days and will continue to do so gradually in East Asian countries including Korea,China and Japan.As a result,conservation of heritage sites is more and more important,esp...The number of GIAHS sites is increasing these days and will continue to do so gradually in East Asian countries including Korea,China and Japan.As a result,conservation of heritage sites is more and more important,especially in Korea.Dealing with issues surrounding land use conflicts are important for conservation of heritages in order to harmonize between conservation and development to prevent reckless development.This study aims to identify measures for land use management and control to allow for sustainable development around agricultural heritage system sites.The results point to the importance of public-private partnerships and local ordinance systems or comprehensive planning of land use controls for agricultural heritage system sites.展开更多
We present a new approach for calculating the C-factor of RUSLE considering the effect of low-reflectance vegetation cover areas on the reduction of the effects on erosion caused by rainfall seasonality.For this,we pr...We present a new approach for calculating the C-factor of RUSLE considering the effect of low-reflectance vegetation cover areas on the reduction of the effects on erosion caused by rainfall seasonality.For this,we propose the coefficients Cr2(rescaled 2)and C-PC(Precipitation Correction),which represent the Cfactor,and an adaptation in NDVI calculation,according to the seasonality of precipitation(NDVI-PC).The Cr2 factor is used when there is no seasonal effect of rainfall on vegetation,while the C-PC factor is calculated for localities under the influence of seasonality,from NDVI-PC.The proposed approaches were tested using different satellites images in the Palmares-Ribeir~ao do Saco watershed,Rio de Janeiro,Brazil.The values of Cr2 and C-PC factors were compared to the Cr factor(rescaled)and to mean values from the literature for different land covers.Our results indicated that the Cr2 factor represents an improvement in accuracy in relation to Cr by considering specific values of the studied area to normalize the data without generalizations.Furthermore,the C-PC factor is able to simulate the effect of seasonality,providing more realistics values of soil loss by the RUSLE as a function of the proportion of area affected by the rainfall seasonality obtained from NDVI-PC.We conclude that both Cr2 and C-PC factors generate values similar of the C-factor observed in the literature,and therefore are able to provide better soil loss estimation than that using the Cr factor.展开更多
Reclamation of degraded grasslands as managed grasslands has been increasingly accelerated in recent years in China. Land use change affects soil nitrogen(N) dynamics and nitrous oxide(N2O) emissions. However, it ...Reclamation of degraded grasslands as managed grasslands has been increasingly accelerated in recent years in China. Land use change affects soil nitrogen(N) dynamics and nitrous oxide(N2O) emissions. However, it remains unclear how large-scale grassland reclamation will impact the grassland ecosystem as a whole. Here, we investigated the effects of the conversion from native to managed grasslands on soil N dynamics and N2O emissions by field experiments in Hulunber in northern China. Soil(0-10 cm), nitrate(NO3-),ammonium(NH4+), and microbial N were measured in plots in a temperate steppe(Leymus chinensis grassland) and two managed grasslands(Medicago sativa and Bromus inermis grasslands) in 2011 and 2012. The results showed conversion of L. chinensis grassland to M.sativa or B. inermis grasslands decreased concentrations of NO3--N, but did not change NH4-N . Soil microbial N was slightly decreased by the conversion of L. chinensis grassland to M.sativa, but increased by the conversion to B. inermis. The conversion of L. chinensis grassland to M. sativa(i.e., a legume grass) increased N2O emissions by 26.2%, while the conversion to the B. inermis(i.e., a non-legume grass) reduced N2O emissions by 33.1%. The conversion from native to managed grasslands caused large created variations in soil NO3-+-N and NH4-N concentrations. Net N mineralization rates did not change significantly in growing season or vegetation type, but to net nitrification rate. These results provide evidence on how reclamation may impact the grassland ecosystem in terms of N dynamics and N2O emissions.展开更多
基金supported by the Fundamental Research Funds for the Central Universities (Grant No. 2011YYL141)
文摘The Three Gorges project accelerates economic development in the Three Gorges Reservoir Area.This paper aimed to investigate the distribution,changes and features of cultivated land in this area,analyze the forces driving the changes in cultivated land area,and propose the countermeasures for cultivated land management.Transition matrix was used to analyze the features of cultivated land changes,and quantitative analysis and qualitative analysis were adopted to research the driving forces according to the features of cultivated land changes.Cultivated land in the Three Gorges Reservoir Area mainly lay to the northwest of the Yangtze River,especially the upper reaches.The areas of cultivated land increased from 1996 to 1999,then decreased from 2000 to 2006,and finally increased again from 2007 to 2009.The important forces driving changes in cultivated land included government policies,employment and food security,increasing construction land,agriculture structure adjustment,land rearrangement,inundation.During cultivated land management,firstly,it is necessary to insist on the principle of cultivated land protection,standardize land exploitation and strictly restrict the transformation of cultivated land into non-farming land.Secondly,land rearrangement must be implemented,which can not only increase the area of the cultivated land,but also improve the quality of the cultivated land.Thirdly,it is feasible to intensify eco-agriculture construction to increase the quantity and quality of cultivated land.Fourthly,it is helpful to improve the traditional agriculture production methods to promote cultivated land quality.Lastly,it is important to propagandize cultivated land protection and realize the enormous pressure of cultivated land shortage,making more people obligated to protect cultivated land.
基金Under the auspices of National Natural Science Foundation of China(No.41371538)Independent Project of State Key Laboratory of Urban and Regional Ecology,Research Center for Eco-Environmental Sciences,Chinese Academy of Sciences(No.SKLURE2008-1-02)
文摘River water plays a key role in human health, and in social and economic development, and is often affected by both natural factors and human activities. An in-depth understanding of the role of these factors can help in developing an effective catchment management strategy to protect precious water resources. This study analyzed river water quality, patterns of terrestrial and riparian ecosystems, intensity of agricultural activities, industrial structure, and spatial distribution of pollutant emissions in the Haihe River Basin in China for the year of 2010, identifying the variables that have the greatest impact on river water quality. The area percentage of farmland in study area, the percentage of natural vegetation cover in the 1000-m riparian zone, rural population density, industrial Gross Domestic Product(GDP)/km^2, and industrial amino nitrogen emissions were all significantly correlated with river water quality(P < 0.05). Farming had the largest impact on river water quality, explaining 43.0% of the water quality variance, followed by the coverage of natural vegetation in the 1000-m riparian zone, which explained 36.2% of the water quality variance. Industrial amino nitrogen emissions intensity and rural population density explained 31.6% and 31.4% of the water quality variance, respectively, while industrial GDP/km^2 explained 26.6%. Together, these five indicators explained 67.3% of the total variance in water quality. Consequently, water environmental management of the Haihe River Basin should focus on adjusting agricultural activities, conserving riparian vegetation, and reducing industrial pollutant emissions by optimizing industrial structure. The results demonstrate how human activities drive the spatial pattern changes of river water quality, and they can provide reference for developing land use guidelines and for prioritizing management practices to maintain stream water quality in a large river basin.
基金supported by the National Basic Research Program of China (2015CB150404)the Special Fund for Agro-scientific Research in the Public Interest, China (201203096)the Project of Shandong Province Higher Educational Science and Technology Program, China (J15LF07)
文摘Understanding of how combinations of agronomic options can be used to improve the grain yield and nitrogen use efficiency(NUE) of winter wheat is limited. A three-year experiment involving four integrated management strategies was conducted from 2013 to 2015 in Tai'an, Shandong Province, China, to evaluate changes in grain yield and NUE. The integrated management treatments were as follows: current practice(T1); improvement of current practice(T2); high-yield management(T3), which aimed to maximize grain yield regardless of the cost of resource inputs; and integrated soil and crop system management(T4) with a higher seeding rate, delayed sowing date, and optimized nutrient management. Seeding rates increased by 75 seeds m^-2 with each treatment from T1(225 seeds m^-2) to T4(450 seeds m^-2). The sowing dates were delayed from T1(5 th Oct.) to T2 and T3(8 th Oct.), and to T4 treatment(12 th Oct.). T1, T2, T3, and T4 received 315, 210, 315, and 240 kg N ha^-1, 120, 90, 210 and 120 kg P2O5 ha^-1, 30, 75, 90, and 45 kg K2O ha^-1, respectively. The ratio of basal application to topdressing for T1, T2, T3, and T4 was 6:4, 5:5, 4:6, and 4:6, respectively, with the N topdressing applied at regreening for T1 and at jointing stage for T2, T3, and T4. The P fertilizers in all treatments were applied as basal fertilizer. The K fertilizer for T1 and T2 was applied as basal fertilizer while the ratio of basal application to topdressing(at jointing stage) of K fertilizer for both T3 and T4 was 6:4. T1, T2, T3, and T4 were irrigated five, four, four and three times, respectively. Treatment T3 produced the highest grain yield among all treatments over three years and the average yield was 9 277.96 kg ha^-1. Grain yield averaged across three years with the T4 treatment(8 892.93 kg ha^-1) was 95.85% of that with T3 and was 21.72 and 6.10% higher than that with T1(7 305.95 kg ha^-1) and T2(8 381.41 kg ha^-1), respectively. Treatment T2 produced the highest NUE of all the integrated treatments. The NUE with T4 was 95.36% of that with T2 and was 51.91 and 25.62% higher than that with T1 and T3, respectively. The N uptake efficiency(UPE) averaged across three years with T4 was 50.75 and 16.62% higher than that with T1and T3, respectively. The N utilization efficiency(UTE) averaged across three years with T4 was 7.74% higher than that with T3. The increased UPE with T4 compared with T3 could be attributed mostly to the lower available N in T4, while the increased UTE with T4 was mainly due to the highest N harvest index and low grain N concentration, which consequently led to improved NUE. The net profit for T4 was the highest among four treatments and was 174.94, 22.27, and 28.10% higher than that for T1, T2, and T3, respectively. Therefore, the T4 treatment should be a recommendable management strategy to obtain high grain yield, high NUE, and high economic benefits in the target region, although further improvements of NUE are required.
基金the Heilongjiang Province Applied Technology Research and Development Program(Grant No.GA20C014).
文摘Nonpoint source(NPS)pollutants resulting from land degradation(LD)have been a key influential factor on the deterioration of water quality.Consequently,sustainable land use management(SLM)practices have been employed to reduce the impacts of LD globally.However,the adoption of SLM practices is often not effective to protect water resources despite its capability of improving water quality.Empirically,evidence shows that activities of land users directly influence SLM practices and NPS pollution of water resources in watersheds,but invariably this has not been clearly understood.Understanding how SLM practices adoption could prevent NPS pollution of water resources in watershed is a necessity.Therefore,the primary aim of the investigation is to comprehend the status of SLM practices with the legal framework supporting the adoption of such practices in the Ashi River watershed.A survey instrument involving structured questionnaire was implemented to collect data.A randomly based lottery method was applied to sample information from 150 land users in two control units’communities.Descriptive and inferential statistics was used to analyze the data.This research revealed that there is low adoption of SLM practices of the study site.The low adoption is due to weak capacity building and enforcement of regulations in the watershed.Occupation and age of the residents are the strongest predictors of SLM adoption rate.Residents connected with farming are more sensitive to the adoption status of SLM.It is our recommendation that policy makers should ensure capacity building,and enforcement of regulations can specifically compel farmers to adopt SLM technologies.This approach would complement other strategies to solve the NPS pollution issue of Ashi River.
文摘Uncertainty in determining optimum conjunctive water use lies not only on variability of hydrological cycle and climate but also on lack of adequate data and perfect knowledge about groundwater-surface water system interactions, errors in historic data and inherent variability of system parameters both in space and time. Simulation-optimization models are used for conjunctive water use management under uncertain conditions. However, direct application of such approach whereby all realizations are considered at every-iteration of the optimization process leads to a highly computational time-consuming optimization problem as the number of realizations increases. Hence, this study proposes a novel approach—a Retrospective Optimization Approximation (ROA) approach. In this approach, a simulation model was used to determine aquifer system responses (draw-downs) which were assembled as response matrices and incorporated in the optimization model (procedure) as coefficients in the constraints. The sample optimization sub-problems generated, were solved and analyzed through ROA-Active-Set procedure implemented under MATLAB code. The ROA-Active Set procedure solves and evaluates a sequence of sample path optimization sub-problems in an increasing number of realizations. The methodology was applied to a real-world conjunctive water use management problem found in Great Letaba River basin, South Africa. In the River basin, surface water source contributes 87% of the existing un-optimized total conjunctive water use withdrawal rate (6512.04 m<sup>3</sup>/day) and the remaining 13% is contributed by groundwater source. Through ROA approach, results indicate that the optimum percentages contribution of the surface and subsurface sources to the total water demand are 58% and 42% respectively. This implies that the existing percentage contribution can be increased or reduced by ±29% that is groundwater source can be increased by 29% while the surface water source contribution can be reduced by 29%. This reveals that the existing conjunctive water use practice is unsustainable wherein surface water system is overstressed while groundwater system is under-utilized. Through k-means sampling technique ROA-Active Set procedure was able to attain a converged maximum expected total optimum conjunctive water use withdrawal rate of 4.35 × 10<sup>4</sup> m<sup>3</sup>/day within a relatively few numbers of iterations (6 to 8 iterations) in about 2.30 Hrs. In conclusion, results demonstrated that ROA approach is capable of managing real-world regional aquifers sustainable conjunctive water use practice under hydro-geological uncertainty conditions.
基金National Science Foundation of the United States the U.S. Department of Agriculture and the U.S. Department of Energy ChinaFLUX
文摘Terrestrial ecosystems represent the second largest carbon reservoir, and the C balance in terrestrial ecosystems can be directly impacted by human activities such as agricultural management practices and land-use changes. This paper focuses on the C-sequestration in soil. Although many studies showed that the concentration of SOC is much higher in the shallow soils (0-30 cm), the deeper horizons represent a much greater mass of soil and represent a huge C-storage pool. The process of preferential retention of more strongly adsorbing components, along with competitive displacement of weakly binding components are the key processes that enhance the movement of organic carbon to deeper soil horizons. DOC represents the most dynamic part of organic carbon in soils, and thus can be used as a timely indicator of the short-term change of C-sequestration. Long-term experiments have demonstrated that higher SOC levels in shallow soils would lead to increased fluxes of DOC to deeper horizons, but more data on a wider range of soils and treatment strategies are needed to fully evaluate the linkages between changes in SOC in shallow soil, vertical fluxes of DOC to deeper soil horizons, and enhanced C-inventories in deeper, slow-turnover SOC pools.
文摘A number of very serious drough disasters occurred in many regions of Aftica during past 30 years. It is commonly considered that they are among the most serious disasters after the World War II. The basic situation of the droughs and drough disasters are introduced briefly, and the main causes resulting 1i drought disasters are analysed in the paper. The lack of rainfall is one of the factors producing the drough disasters in Africa, but it is not the real one. From environmental viewpoints, the drough disasters in Africa resulted from unsuitable land use and management by man, and in essence they are the results of man-made environmental disturbance. Finally, the strategy for preventing drought disasters in Africa is suggested.
文摘While living in the century of crisis (of energy and water), more focus should be given on renewable energy. Since Kosovo is more limited in hydro-energy resources than the neighboring countries, it is essential to study them and put to use more efficiently. Subject of this study is Istog spring as it is the most important spring of Mokra Gora together with Vrella and White Drino. The spring is analyzed as a complex resource on water economy providing: fish (trout), potable water, water for irrigation and hydro-energy (currently not in function). The focus of the study remains the hydro-energetic component, not just a revitalization process but as an upgrade of the existing facility to increase the capacity by 2-3 times. This study is based on information selection and processing regarding detailed technical and economic analysis providing a method for other springs that will be studied in the future. Two technical solutions to the problem are provided as the best economical and technical solution. Solution I has one level and a calculated flow of 7.5 m^3/s and consists generally of renovation works on existing facilities; Solution 2 plans the construction of another level 3 m lower than the existing one, increasing so both the hydro-power capacity and implementation cost for the project Both solutions provide little to no impact on the spring main attributes. The valley ecology will not be influenced because the water after HPP (Hydro Power Plant) will be flowing in its own bed. After this study, Istog spring will be more attractive to donors and will contribute in improvement of energetic structure in Kosovo that for the time being is poor in hydro component.
文摘Cheetahs and other apex predators are threatened by human-wildlife conflict and habitat degradation. Bush encroachment creates one of the biggest forms of habitat change, thus it is important to understand the impact this has on habitat use. We investigated habitat preferences of five male cheetahs in Namibian farmlands degraded by bush encroachment. Cheetahs were tracked using satellite based Global System for Mobile (GSM) collars providing a higher resolution on ranging behavior. We aimed to investigate: 1) habitat characteristics;2) evidence for habitat selection;3) temporal activity partitioning;and 4) whether revisits to locations were related to habitat type. There were differences in habitat characteristics, showing that cheetahs were able to utilise different habitats. Fecal pellet counts revealed that warthog, oryx, scrub hare and kudu were most abundant. The cheetahs spent more time in high visibility shrubland, suggesting they selected rewarding patches within predominantly bush-encroached landscapes. The usage in marginal habitat was strikingly influenced by habitat type, with both previously cleared and open vegetated areas showing high proportions in edge use. Individuals exhibited significant temporal activity partitioning, showing peaks between late afternoon and early morning hours. This finding could be key to managing human-wildlife conflict by showing that increased protection such as the use of herders and livestock guarding dogs should be used as mitigation methods to minimize the impact of cheetah specific temporal patterns at all times as defined in this research. Visits to the same locations were not correlated to habitat type;revisits may be dictated by other reasons such as social interaction, prey density or avoidance of other predators. Findings from this study will help build existing knowledge on the effects bush encroachment has on cheetah habitat preference.
文摘Background:Land use change plays a vital role in global carbon dynamics.Understanding land use change impact on soil carbon stock is crucial for implementing land use management to increase carbon stock and reducing carbon emission.Therefore,the objective of our study was to determine land use change and to assess its effect on soil carbon stock in semi-arid part of Rajasthan,India.Landsat temporal satellite data of Pushkar valley region of Rajasthan acquired on 1993,2003,and 2014 were analyzed to assess land use change.Internal trading of land use was depicted throughmatrices.Soil organic carbon(SOC)stock was calculated for soil to a depth of 30 cm in each land use type in 2014 using field data collection.The SOC stock for previous years was estimated using stock change factor.The effect of land use change on SOC stock was determined by calculating change in SOC stock(t/ha)by deducting the base-year SOC stock from the final year stock of a particular land use conversion.Results:The total area under agricultural lands was increased by 32.14%while that under forest was decreased by 23.14%during the time period of 1993–2014.Overall land use change shows that in both the periods(1993–2003 and 2003–2014),7%of forest area was converted to agricultural land and about 15%changes occurred among agricultural land.In 1993–2003,changes among agricultural land led to maximum loss of soil carbon,i.e.,4.88 Mt C and during 2003–2014,conversion of forest to agricultural land led to loss in 3.16 Mt C.Conclusion:There was a continuous decrease in forest area and increase in cultivated area in each time period.Land use change led to alteration in carbon equity in soil due to change or loss in vegetation.Overall,we can conclude that the internal trading of land use area during the 10-year period(1993–2003)led to net loss of SOC stock by 8.29 Mt C.Similarly,land use change during 11-year period(2003–2014)caused net loss of SOC by 2.76 Mt C.Efforts should be made to implement proper land use management practices to enhance the SOC content.
文摘On May 8,2017,the Measures for Management of Land Use Master Plan was released for enforcement by the Ministry of Land and Resources.The Measures clearly points out that a land use master plan is an essential part of the national spatial planning system and an important basis for implementing land use modes control and management,
文摘The number of GIAHS sites is increasing these days and will continue to do so gradually in East Asian countries including Korea,China and Japan.As a result,conservation of heritage sites is more and more important,especially in Korea.Dealing with issues surrounding land use conflicts are important for conservation of heritages in order to harmonize between conservation and development to prevent reckless development.This study aims to identify measures for land use management and control to allow for sustainable development around agricultural heritage system sites.The results point to the importance of public-private partnerships and local ordinance systems or comprehensive planning of land use controls for agricultural heritage system sites.
基金Paulo Tarso S.Oliveira was supported by the Brazilian National Council for Scientific and Technological Development(CNPq)(grants 441289/2017e7 and 306830/2017e5)the Coordination of Superior Level Staff Improvement-Brazil(CAPES)(Finance Code 001).
文摘We present a new approach for calculating the C-factor of RUSLE considering the effect of low-reflectance vegetation cover areas on the reduction of the effects on erosion caused by rainfall seasonality.For this,we propose the coefficients Cr2(rescaled 2)and C-PC(Precipitation Correction),which represent the Cfactor,and an adaptation in NDVI calculation,according to the seasonality of precipitation(NDVI-PC).The Cr2 factor is used when there is no seasonal effect of rainfall on vegetation,while the C-PC factor is calculated for localities under the influence of seasonality,from NDVI-PC.The proposed approaches were tested using different satellites images in the Palmares-Ribeir~ao do Saco watershed,Rio de Janeiro,Brazil.The values of Cr2 and C-PC factors were compared to the Cr factor(rescaled)and to mean values from the literature for different land covers.Our results indicated that the Cr2 factor represents an improvement in accuracy in relation to Cr by considering specific values of the studied area to normalize the data without generalizations.Furthermore,the C-PC factor is able to simulate the effect of seasonality,providing more realistics values of soil loss by the RUSLE as a function of the proportion of area affected by the rainfall seasonality obtained from NDVI-PC.We conclude that both Cr2 and C-PC factors generate values similar of the C-factor observed in the literature,and therefore are able to provide better soil loss estimation than that using the Cr factor.
基金supported by The National Basic Research Program (973) of China (No. 2015CB150800)the National Key Research and Development Program of China (No. 2016YFC0500603)+1 种基金the China Agriculture Research System “China agriculture research system” (No. CARS-35)the National Nonprofit Institute Research Grant of CAAS (No. 647-53)
文摘Reclamation of degraded grasslands as managed grasslands has been increasingly accelerated in recent years in China. Land use change affects soil nitrogen(N) dynamics and nitrous oxide(N2O) emissions. However, it remains unclear how large-scale grassland reclamation will impact the grassland ecosystem as a whole. Here, we investigated the effects of the conversion from native to managed grasslands on soil N dynamics and N2O emissions by field experiments in Hulunber in northern China. Soil(0-10 cm), nitrate(NO3-),ammonium(NH4+), and microbial N were measured in plots in a temperate steppe(Leymus chinensis grassland) and two managed grasslands(Medicago sativa and Bromus inermis grasslands) in 2011 and 2012. The results showed conversion of L. chinensis grassland to M.sativa or B. inermis grasslands decreased concentrations of NO3--N, but did not change NH4-N . Soil microbial N was slightly decreased by the conversion of L. chinensis grassland to M.sativa, but increased by the conversion to B. inermis. The conversion of L. chinensis grassland to M. sativa(i.e., a legume grass) increased N2O emissions by 26.2%, while the conversion to the B. inermis(i.e., a non-legume grass) reduced N2O emissions by 33.1%. The conversion from native to managed grasslands caused large created variations in soil NO3-+-N and NH4-N concentrations. Net N mineralization rates did not change significantly in growing season or vegetation type, but to net nitrification rate. These results provide evidence on how reclamation may impact the grassland ecosystem in terms of N dynamics and N2O emissions.