Maximizing the utilization of lithium-ion battery capacity is an important means to alleviate the range anxiety of electric vehicles.Battery pack inconsistency is the main limiting factor for improving battery pack ca...Maximizing the utilization of lithium-ion battery capacity is an important means to alleviate the range anxiety of electric vehicles.Battery pack inconsistency is the main limiting factor for improving battery pack capacity utilization,and poses major safety hazards to energy storage systems.To solve this problem,a maximum capacity utilization scheme based on a path planning algorithm is proposed.Specifically,the reconfigurable topology proposed is highly flexible and fault-tolerant,enabling battery pack consistency through alternating cell discharge and reducing the increased risk of short circuits due to relay error.The Dijkstra algorithm is used to find the optimal energy path,which can effectively remove faulty cells and find the current path with the best consistency of the battery pack and the lowest relay loss.Finally,the effectiveness of the scheme is verified by hardware-in-the-loop experiments,and the experimental results show that the state-of-charge SOC consistency of the battery pack at the end of discharge is increased by 34.18%,the relay energy loss is reduced by 0.16%,and the fault unit is effectively isolated.展开更多
b The discharge performance of Mg-Al-Pb-La anode was investigated by electrochemical techniques and compared withthat of Mg-Al-Pb alloy. The results indicate that the Mg-Al-Pb-La anode provides enhanced corrosion resi...b The discharge performance of Mg-Al-Pb-La anode was investigated by electrochemical techniques and compared withthat of Mg-Al-Pb alloy. The results indicate that the Mg-Al-Pb-La anode provides enhanced corrosion resistance at open circlepotential, and exhibits better discharge activity than the Mg-Al-Pb alloy. The utilization efficiency of Mg-Al-Pb-La anode ishigher than that of commercial Mg-Al-Zn (AZ) and Mg-Al-Mn (AM) alloys. A single Mg-air battery with Mg-Al-Pb-La alloy asthe anode and air as the cathode has an average discharge potential of 1.295 V and a discharge capacity of 1370 mA·h/g duringdischarge at 10 mA/cm2, which is higher than that of batteries using Mg-Li anodes. The enhancement in discharge performance ofthe Mg-Al-Pb-La anode is caused by its modified microstructure, which reduces the self-corrosion and accelerates the spalling ofoxidation products during battery discharge. Furthermore, the dissolution mechanism of Mg-Al-Pb-La anode during the dischargeprocess was analyzed.展开更多
Using provincial-level data, this paper has estimated capacity utilization, technical efficiency and equipment utilization for China's industrial sectors, conducted a comparative analysis of capacity utilization a...Using provincial-level data, this paper has estimated capacity utilization, technical efficiency and equipment utilization for China's industrial sectors, conducted a comparative analysis of capacity utilization across various sectors, provinces, municipalities and autonomous regions, and discussed the determinants of capacity utilization. We have reached the following conclusions:(1) China's average industrial capacity utilization stood at 69.3% between 2001 and 2011, rising for most of the time before 2008 and generally declining afterwards;(2) among the two sources of capacity utilization, equipment utilization is lower than technical efficiency and constitutes a major factor affecting capacity utilization, yet technical efficiency has demonstrated a significant trend of decline in recent years;(3) at the industry level, industrial capacity utilization is generally high for light industries such as textiles while generally low for mining, public utilities and heavy industries in manufacturing;(4) at the regional level, capacity utilization, technical efficiency and equipment utilization are much higher in the eastern region than in the other regions, where the levels are relatively close to each other;(5) economic growth and the level of market-based operation have a significant positive correlation with capacity utilization, while industry capital intensity, the share of output value from SOEs and local government investment intensity have a significant negative correlation with capacity utilization.展开更多
Mg-Al-Pb alloy is a good candidate for the anode material of magnesium seawater battery. For improving the low current utilization efficiency of Mg-Al-Pb alloy, the influence of Ce on the microstructures and electroch...Mg-Al-Pb alloy is a good candidate for the anode material of magnesium seawater battery. For improving the low current utilization efficiency of Mg-Al-Pb alloy, the influence of Ce on the microstructures and electrochemical corrosion properties in a 3.5% NaCl solution was investigated using scanning electron microscope and electrochemical measurements. The results indicate that Ce refines the grain structure of Mg-Al-Pb alloy. The formation of strip Al11Ce3 second phase promotes the uniform distribution of Mg17Al12 phase in Mg-Al-Pb-Ce alloy. The addition of cerium accelerates the discharge activity of Mg-Al-Pb alloy. Due to a large number of cathodic Al11Ce3 and MglyAla2 phases, Ce promotes the micro-galvanic corrosion and leads to larger corrosion current density and hydrogen evolution rate in Mg-Al-Pb-Ce alloy than those in Mg-Al-Pb alloy. However, Mg-Al-Pb alloy expresses smaller utilization efficiency than Mg-Al-Pb-Ce alloy because of grain detachment.展开更多
Sodium-ion batteries(SIBs)are expected to offer affordability and high energy density for large-scale energy storage system.However,the commercial application of SIBs is hurdled by low initial coulombic efficiency(ICE...Sodium-ion batteries(SIBs)are expected to offer affordability and high energy density for large-scale energy storage system.However,the commercial application of SIBs is hurdled by low initial coulombic efficiency(ICE),continuous Na loss during long-term operation,and low sodium-content of cathode materials.In this scenario,presodiation strategy by introducing an external sodium reservoir has been rationally proposed,which could supplement additional sodium ions into the system and thereby markedly improve both the cycling performance and energy density of SIBs.In this review,the significance of presodiation is initially introduced,followed by comprehensive interpretation on technological properties,underlying principles,and associated approaches,as well as our perspectives on present inferiorities and future research directions.Overall,this contribution outlines a distinct pathway towards the presodiation methodology,of significance but still in its nascent phase,which may inspire the targeted guidelines to explore new chemistry in this field.展开更多
为提高电动汽车充电站储能系统稳定性、安全性和经济性,提出一种考虑动力电池梯次利用的充电站光储容量优化配置方法。首先,针对退役动力电池考虑了电池充放电深度和循环次数对使用寿命的影响,建立了退役动力电池容量衰减和寿命损耗模型...为提高电动汽车充电站储能系统稳定性、安全性和经济性,提出一种考虑动力电池梯次利用的充电站光储容量优化配置方法。首先,针对退役动力电池考虑了电池充放电深度和循环次数对使用寿命的影响,建立了退役动力电池容量衰减和寿命损耗模型,基于容量衰减和寿命损耗模型建立退役动力电池荷电状态(state of charge,SOC)与健康状态(state of health,SOH)耦合关系评价模型;其次,在SOC与SOH耦合关系评价模型的基础上,以充电站年净收益最优为目标函数建立充电站容量优化配置模型;最后,在满足一定能量交换策略的前提下,以某地区光伏储能电站为例对模型进行求解。通过算例分析得出:基于退役电池SOC与SOH耦合关系评价模型进行梯次利用的储能容量优化配置能使整个储能系统的功率峰值降低,且相较于无评价模型系统的功率更加平滑,有利于延长储能系统的寿命周期,提高了系统的稳定性和经济性。展开更多
基金supported in part by the National Natural Science Foundation of China(62203352,U2003110)in part by the Key Laboratory Project of Shaanxi Provincial Department of Education(20JS110)in part by the Thousand Talents Plan of Shaanxi Province for Young Professionals。
文摘Maximizing the utilization of lithium-ion battery capacity is an important means to alleviate the range anxiety of electric vehicles.Battery pack inconsistency is the main limiting factor for improving battery pack capacity utilization,and poses major safety hazards to energy storage systems.To solve this problem,a maximum capacity utilization scheme based on a path planning algorithm is proposed.Specifically,the reconfigurable topology proposed is highly flexible and fault-tolerant,enabling battery pack consistency through alternating cell discharge and reducing the increased risk of short circuits due to relay error.The Dijkstra algorithm is used to find the optimal energy path,which can effectively remove faulty cells and find the current path with the best consistency of the battery pack and the lowest relay loss.Finally,the effectiveness of the scheme is verified by hardware-in-the-loop experiments,and the experimental results show that the state-of-charge SOC consistency of the battery pack at the end of discharge is increased by 34.18%,the relay energy loss is reduced by 0.16%,and the fault unit is effectively isolated.
基金Project(2015JC3004)supported by the Science and Technology Plan of Hunan Province,ChinaProject(2016JJ2147)supported by the Natural Science Foundation of Hunan Province,ChinaProject(51401243)supported by the National Natural Science Foundation of China
文摘b The discharge performance of Mg-Al-Pb-La anode was investigated by electrochemical techniques and compared withthat of Mg-Al-Pb alloy. The results indicate that the Mg-Al-Pb-La anode provides enhanced corrosion resistance at open circlepotential, and exhibits better discharge activity than the Mg-Al-Pb alloy. The utilization efficiency of Mg-Al-Pb-La anode ishigher than that of commercial Mg-Al-Zn (AZ) and Mg-Al-Mn (AM) alloys. A single Mg-air battery with Mg-Al-Pb-La alloy asthe anode and air as the cathode has an average discharge potential of 1.295 V and a discharge capacity of 1370 mA·h/g duringdischarge at 10 mA/cm2, which is higher than that of batteries using Mg-Li anodes. The enhancement in discharge performance ofthe Mg-Al-Pb-La anode is caused by its modified microstructure, which reduces the self-corrosion and accelerates the spalling ofoxidation products during battery discharge. Furthermore, the dissolution mechanism of Mg-Al-Pb-La anode during the dischargeprocess was analyzed.
基金the sponsorship of the CASS Innovation Project“Study on Monitoring Risk Evaluation of the Operation of Industrial Economy”(approval number:SKGJCX2013-01)
文摘Using provincial-level data, this paper has estimated capacity utilization, technical efficiency and equipment utilization for China's industrial sectors, conducted a comparative analysis of capacity utilization across various sectors, provinces, municipalities and autonomous regions, and discussed the determinants of capacity utilization. We have reached the following conclusions:(1) China's average industrial capacity utilization stood at 69.3% between 2001 and 2011, rising for most of the time before 2008 and generally declining afterwards;(2) among the two sources of capacity utilization, equipment utilization is lower than technical efficiency and constitutes a major factor affecting capacity utilization, yet technical efficiency has demonstrated a significant trend of decline in recent years;(3) at the industry level, industrial capacity utilization is generally high for light industries such as textiles while generally low for mining, public utilities and heavy industries in manufacturing;(4) at the regional level, capacity utilization, technical efficiency and equipment utilization are much higher in the eastern region than in the other regions, where the levels are relatively close to each other;(5) economic growth and the level of market-based operation have a significant positive correlation with capacity utilization, while industry capital intensity, the share of output value from SOEs and local government investment intensity have a significant negative correlation with capacity utilization.
基金Project(2015JC3004)supported by Science and Technology Plan Projects of Hunan Province,ChinaProject(51401243)supported by the National Natural Science Foundation of China
文摘Mg-Al-Pb alloy is a good candidate for the anode material of magnesium seawater battery. For improving the low current utilization efficiency of Mg-Al-Pb alloy, the influence of Ce on the microstructures and electrochemical corrosion properties in a 3.5% NaCl solution was investigated using scanning electron microscope and electrochemical measurements. The results indicate that Ce refines the grain structure of Mg-Al-Pb alloy. The formation of strip Al11Ce3 second phase promotes the uniform distribution of Mg17Al12 phase in Mg-Al-Pb-Ce alloy. The addition of cerium accelerates the discharge activity of Mg-Al-Pb alloy. Due to a large number of cathodic Al11Ce3 and MglyAla2 phases, Ce promotes the micro-galvanic corrosion and leads to larger corrosion current density and hydrogen evolution rate in Mg-Al-Pb-Ce alloy than those in Mg-Al-Pb alloy. However, Mg-Al-Pb alloy expresses smaller utilization efficiency than Mg-Al-Pb-Ce alloy because of grain detachment.
基金the financial support from the National Nature Science Foundation of China(No.U20A20249)the National Key Research and Development Program of China(2021YFB3800300)the Shenzhen Science and Technology Innovation Commission(KCXST20221021111216037)。
文摘Sodium-ion batteries(SIBs)are expected to offer affordability and high energy density for large-scale energy storage system.However,the commercial application of SIBs is hurdled by low initial coulombic efficiency(ICE),continuous Na loss during long-term operation,and low sodium-content of cathode materials.In this scenario,presodiation strategy by introducing an external sodium reservoir has been rationally proposed,which could supplement additional sodium ions into the system and thereby markedly improve both the cycling performance and energy density of SIBs.In this review,the significance of presodiation is initially introduced,followed by comprehensive interpretation on technological properties,underlying principles,and associated approaches,as well as our perspectives on present inferiorities and future research directions.Overall,this contribution outlines a distinct pathway towards the presodiation methodology,of significance but still in its nascent phase,which may inspire the targeted guidelines to explore new chemistry in this field.
文摘为提高电动汽车充电站储能系统稳定性、安全性和经济性,提出一种考虑动力电池梯次利用的充电站光储容量优化配置方法。首先,针对退役动力电池考虑了电池充放电深度和循环次数对使用寿命的影响,建立了退役动力电池容量衰减和寿命损耗模型,基于容量衰减和寿命损耗模型建立退役动力电池荷电状态(state of charge,SOC)与健康状态(state of health,SOH)耦合关系评价模型;其次,在SOC与SOH耦合关系评价模型的基础上,以充电站年净收益最优为目标函数建立充电站容量优化配置模型;最后,在满足一定能量交换策略的前提下,以某地区光伏储能电站为例对模型进行求解。通过算例分析得出:基于退役电池SOC与SOH耦合关系评价模型进行梯次利用的储能容量优化配置能使整个储能系统的功率峰值降低,且相较于无评价模型系统的功率更加平滑,有利于延长储能系统的寿命周期,提高了系统的稳定性和经济性。