Synthetic plastics are often considered to be materials that cannot be broken down by natural processes.One such plastic,polyethylene terephthalate(PET),is commonly used in everyday items but when these products are d...Synthetic plastics are often considered to be materials that cannot be broken down by natural processes.One such plastic,polyethylene terephthalate(PET),is commonly used in everyday items but when these products are discarded,they can cause serious harm to the environment and human health.In this study,PET plastic waste was used to create activated carbon using a physical activation process that involved using CO2 gas.The researchers investigated the effects of different temperatures,carbonization,and activation times on the resulting activated carbon’s surface area.The activated carbon was then analyzed using scanning electron microscopy(SEM),X-ray diffraction(XRD),FTIR,and BET.The activated carbon created from PET plastic waste showed excellent absorption properties for methylene blue in aqueous solutions across a wide range of pH levels.By creating activated carbon from plastic waste,not only are environmental issues addressed,but high-value activated carbon is produced for environmental remediation purposes.展开更多
In this study, waste tire was used as raw material for the production of activated carbons through pyrolysis. 'Fire char was first produced by carbomzation at 550℃ under nitrogen. A two tactortal design was used to ...In this study, waste tire was used as raw material for the production of activated carbons through pyrolysis. 'Fire char was first produced by carbomzation at 550℃ under nitrogen. A two tactortal design was used to optimize the production of activated carbon from tire char. The effects of several factors controlling the activation process, such as temperature (.830-930℃), time (2-6h) and percentage ot carbon dioxide (70%-100%) were investigated. The production was described mathematically as a function of these three factors. First order modeling equations were developed for surface area, yield and mesopore volume. It was concluded that the yield, BET surface area and mesopore volume of activated carbon were most sensitive to activation temperature and time while percentage of carbon dioxide in the activation gas was a less significant factor.展开更多
Water supply project of drawing from the Songhua River in central cities of Jilin is taken as research object.On the basis of analyzing project characteristics and natural conditions of the project area,site selection...Water supply project of drawing from the Songhua River in central cities of Jilin is taken as research object.On the basis of analyzing project characteristics and natural conditions of the project area,site selection of waste slag yard of water diversion project and design of water and soil conservation measures are discussed.Rationality of site selection of waste slag yard and pertinence of prevention and control measures of water and soil loss in waste slag yard are analyzed,and comprehensive utilization of waste slag in large-scale production and construction projects is explored.展开更多
Red mud produced in the Bayer process is a hazardous solid waste because of its high alkalinity; however, it is rich in valuable components such as titanium, iron, and aluminum. In this study, a novel calcification-ca...Red mud produced in the Bayer process is a hazardous solid waste because of its high alkalinity; however, it is rich in valuable components such as titanium, iron, and aluminum. In this study, a novel calcification-carbonation method was developed to recover alkali and alumina from Bayer red mud under mild reaction conditions. Batch experiments were performed to evaluate the potential effects of im- portant parameters such as temperature, amount of CaO added, and CO2 partial pressure on the recovery of alkali and alumina. The results showed that 95.2% alkali and 75.0% alumina were recovered from red mud with decreases in the mass ratios of Na2O to Fe2O3 and of Al2O3 to Fe2O3 from 0.42 and 0.89 to 0.02 and 0.22, respectively. The processed red mud with less than 0.5wt% Na2O can potentially be used as a construction material.展开更多
A nitrogen and sulfur co-doped carbon has been synthesized employing egg white as a sustainable protein-rich precursor.According to CHNS elemental analysis,N,S and O heteroatoms accounted for mass fractions of 3.66%,2...A nitrogen and sulfur co-doped carbon has been synthesized employing egg white as a sustainable protein-rich precursor.According to CHNS elemental analysis,N,S and O heteroatoms accounted for mass fractions of 3.66%,2.28%and 19.29%respectively,and the types of surface functionalities were further characterized by FT-IR and XPS measurements.Although the carbon possessed a smaller surface area(815 m2·g-1)compared to a commercial activated carbon(1100 m2·g-1),its adsorption capacity towards Co2+reached 320.3 mg·g-1,which was over 8 times higher compared to the limited 34.0 mg·g-1 over the activate carbon.Furthermore,the carbon was found to be an efficient adsorbent towards a series of metal ions including VO2+,Cr3+,Ni2+,Cu2+and Cd2+.Combined with its environmental merits,the protein derived carbon may be a promising candidate for heavy metal pollution control.展开更多
Mineral carbonation is a promising CO_(2) sequestration strategy that can utilize industrial wastes to convert CO_(2) into high-value CaCO_(3).This review summarizes the advancements in CO_(2) mineralization using typ...Mineral carbonation is a promising CO_(2) sequestration strategy that can utilize industrial wastes to convert CO_(2) into high-value CaCO_(3).This review summarizes the advancements in CO_(2) mineralization using typical industrial wastes to prepare ultrafine CaCO_(3).This work surveys the mechanisms of CO_(2) mineralization using these wastes and its capacities to synthesize CaCO_(3),evaluates the effects of carbonation pathways and operating parameters on the preparation of CaCO_(3),analyzes the current industrial application status and economics of this technology.Due to the large amount of impurities in solid wastes,the purity of CaCO_(3) prepared by indirect methods is greater than that prepared by direct methods.Crystalline CaCO_(3) includes three polymorphs.The polymorph of CaCO_(3) synthesized by carbonation process is determined the combined effects of various factors.These parameters essentially impact the nucleation and growth of CaCO_(3) by altering the CO_(2) supersaturation in the reaction system and the surface energy of CaCO_(3) grains.Increasing the initial pH of the solution and the CO_(2)flow rate favors the formation of vaterite,but calcite is formed under excessively high pH.Vaterite formation is favored at lower temperatures and residence time.With increased temperature and prolonged residence time,it passes through aragonite metastable phase and eventually transforms into calcite.Moreover,polymorph modifiers can decrease the surface energy of CaCO_(3) grains,facilitating the synthesis of vaterite.However,the large-scale application of this technology still faces many problems,including high costs,high energy consumption,low calcium leaching rate,low carbonation efficiency,and low product yield.Therefore,it is necessary to investigate ways to accelerate carbonation,optimize operating parameters,develop cost-effective agents,and understand the kinetics of CaCO_(3) nucleation and crystallization to obtain products with specific crystal forms.Furthermore,more studies on life cycle assessment(LCA)should be conducted to fully confirm the feasibility of the developed technologies.展开更多
Solar interface water evaporation has been demonstrated to be an advanced method for freshwater production with high solar energy utilization.The development of evaporators with lower cost and higher efficiency is a k...Solar interface water evaporation has been demonstrated to be an advanced method for freshwater production with high solar energy utilization.The development of evaporators with lower cost and higher efficiency is a key challenge in the manufacture of practical solar interface water evaporation devices.Herein,a bamboo leaf-derived carbon-based evaporator is designed based on the light trace simulation.And then,it is manufactured by vertical arrangement and carbonization of bamboo leaves and subsequent polyacrylamide modification.The vertically arranged carbon structure can extend the light path and increase the light-absorbing area,thus achieving excellent light absorption.Furthermore,the continuous distribution of polyacrylamide hydrogel between these vertical carbons can support high-speed water delivery and shorten the evaporation path.Therefore,this evaporator exhibits an ultrahigh average light absorption rate of~96.1%,a good water evaporation rate of 1.75 kg m^(-2) h^(-1),and an excellent solar-to-vapor efficiency of 91.9%under one sun irradiation.Furthermore,the device based on this evaporator can effectively achieve seawater desalination,heavy metal ion removal,and dye separation while completing water evaporation.And this device is highly available for actual outdoor applications and repeated recycling.展开更多
Humic acid(HA)was carbonized at 300,400 and 500℃ and then functionalized with 1 wt%–12 wt%Fe(Ⅲ)respectively[CHA300/400/500-Fe(Ⅲ)].Adsorption of such Fe(III)-functionalized carbonized HA as adsorbents to aqueous te...Humic acid(HA)was carbonized at 300,400 and 500℃ and then functionalized with 1 wt%–12 wt%Fe(Ⅲ)respectively[CHA300/400/500-Fe(Ⅲ)].Adsorption of such Fe(III)-functionalized carbonized HA as adsorbents to aqueous tetracycline(TC:25 mg·L^-1)was studied.The adsorption equilibrium time for CHA400-Fe(Ⅲ)to TC was 6 h faster and the adsorption removal efficiency(Re)was two times higher than that of HA/CHA.The adsorption Reof CHA400-Fe(Ⅲ)loaded 10%iron[CHA400-(10%)Fe(Ⅲ)]to TC could reach 99.8%at 8 h and still kept80.6%after 8 cycles.The adsorption kinetics were well fitted to the pseudo-second-order equation and the adsorption isotherms could be well delineated via Langmuir equations(R^2N 0.99),indicating that the homogeneous chemical adsorption of TC occurred on the adsorbents.The main adsorption mechanisms of TC were complexation Fe(III)and hydrophobic distribution.Electropositive and electronegative repulsion between TC and CHA400-(10%)Fe(Ⅲ)at lowly p H(2)and highly p H(8–10)respectively,leaded to the relatively low adsorption capacity and more notable influence of ion concentration.When the p H was between 4 and 8,TC mainly existed in neutral molecules(TCH2),so the influence of ion concentration was not obvious.The dynamic adsorption results showed that the CHA400-(10%)Fe(Ⅲ)could continuously treat about 2.4 L TC(27 mg·L^-1)wastewater with the effluent concentration as low as 0.068 mg·L^-1.Our study suggested a broad application prospect of a new,effective,lowcost and environment-friendly adsorbent CHA400-(10%)Fe(Ⅲ)for treatment of low-concentration TC polluted wastewater.展开更多
This research demonstrated the feasibility of converting source-separated human urine into a solid fertilizer by means of continuous absorption and solar thermal evaporation using dried water hyacinth as adsorbent. In...This research demonstrated the feasibility of converting source-separated human urine into a solid fertilizer by means of continuous absorption and solar thermal evaporation using dried water hyacinth as adsorbent. In a preliminary experiment, the dried petioles of water hyacinth (DWH) absorbed urine in a mean rate of 18.78 ml·g-1 within 7 d, retrieving about 3.46% urine dissolved solids (UDS). In an advanced experiment, the DWH’s capacity of urine absorption declined from an initial 2.73 L·kg-1·d-1 to 0.68 L·kg-1·d-1, with a requirement of material change in about 25 effective days and an average ratio of 25 (L) to 1 (kg). Phosphorus (P2O5) concentration in the adsorbent increased from 0.46% (material baseline) to 3.14% (end product), suggesting a satisfactory recovery of the element. In field application, the urine was discharged, not in wet weather, onto the DWH via a tube connected to a waterless urinal. There are several ways to use the UDS-DWH as P(K)-rich fertilizer, e.g., making soluble fertilizer for foliage spraying to encourage prolific flowering and fruiting. Apparently, utilization of water hyacinth waste to recover dissolved plant nutrient elements from source-separated urine will benefit the environment in a wide range of perspectives. The herein innovative use of water hyacinth is also expected to be useful in the recycling of certain dissolved hazardous materials.展开更多
This paper presents research on transport properties and alkali-silica reaction (ASR) susceptibility of mortars containing a pozzolanic waste generated in the fluid catalytic cracking (wFCC) unit by the Portuguese oil...This paper presents research on transport properties and alkali-silica reaction (ASR) susceptibility of mortars containing a pozzolanic waste generated in the fluid catalytic cracking (wFCC) unit by the Portuguese oil-refinery. For this purpose, two series of mortars were prepared by partially replacing cement with 5%, 10% and 15% of wFCC catalyst. The main difference between the two series of mortars is the sand reactivity used in their composition. The results revealed that wFCC catalyst blended cement mortars exhibit an increased resistance against capillary water absorption and chloride migration, as well as a considerable inhibition effect on deleterious ASR expansion. However, under the adopted experimental conditions the incorporation of wFCC catalyst in mortars decreases their carbonation resistance.展开更多
There is an increased global demand for activated carbon(AC)in application of water treatment and purification.Water pollutants that have exhibited a greater removal efficiency by AC included but not limited to heavy ...There is an increased global demand for activated carbon(AC)in application of water treatment and purification.Water pollutants that have exhibited a greater removal efficiency by AC included but not limited to heavy metals,pharmaceuticals,pesticides,natural organic matter,disinfection by-products,and microplastics.Granular activated carbon(GAC)is mostly used in aqueous so-lutions and adsorption columns for water treatment.Commercial AC is not only costly,but also obtained from non-renewable sources.This has prompted the search for alternative renewable materials for AC production.Biomass wastes present a great potential of such materials because of their availability and carbonaceous nature.This in turn can reduce on the adverse environmental effects caused by poor disposal of these wastes.The challenges associated with biomass waste based GAC are their low strength and attrition resistance which make them easily disintegrate under aqueous phase.This paper provides a comprehensive review on recent advances in production of biomass waste based GAC for water treatment and highlights future research directions.Production parameters such as granulation conditions,use of binders,carbonization,activation methods,and their effect on textural properties are discussed.Factors influencing the adsorption capacities of the derived GACs,adsorption models,adsorption mechanisms,and their regeneration potentials are reviewed.The literature reveals that biomass waste materials can produce GAC for use in water treatment with possibilities of being regenerated.Nonetheless,there is a need to explore 1)the effect of preparation pathways on the adsorptive properties of biomass derived GAC,2)sustainable production of biomass derived GAC based on life cycle assessment and techno-economic analysis,and 3)adsorption mechanisms of GAC for removal of contaminants of emerging concerns such as microplastics and unregulated disinfection by-products.展开更多
Analysis of the U.S.EPA(Environmental Protection Agency)database of 2,549 MSW(Municipal Solid Waste)landfills showed that there were 1,164 operating landfills in which 348 million short tons(316 million metric tons)of...Analysis of the U.S.EPA(Environmental Protection Agency)database of 2,549 MSW(Municipal Solid Waste)landfills showed that there were 1,164 operating landfills in which 348 million short tons(316 million metric tons)of waste were landfilled in 2017.In total,these landfills occupy about 370 million square meters of land so it is not possible to monitor the generation of LFG(Landfill Gas)generation accurately,or collect most of the LFG generated.This study was based on the hypothesis that,on the average,methane generation is proportional to the tonnage of wastes landfilled annually.The Landfill Methane Outreach Program of the EPA(EPA-LMOP)compiles annual operating data of all methane-capturing landfills.Our analysis of the 2018 data for 396 LMOP operating landfills showed that 210 million short tons of wastes were deposited and 5.06 million short tons of methane were captured,i.e.,an average capture of 0.024-ton CH4/ton waste.On the basis of the anaerobic reaction of the DOC(Degradable Organic Carbon)in landfilled wastes,the average rate of methane generation from all operating U.S.landfills was estimated to be 0.05 ton of CH4 per ton of annual capacity;this number corresponds to bioreaction of about one half of the total organic carbon in MSW.On this basis,the average rate of CH4 emission from the 396 LMOP landfills was estimated to be 0.026-ton CH4 per annual ton of deposition and the average efficiency of LFG capture,48%.Adding up all 1,164 operating landfills,their total emission of methane was estimated at 11.9 million metric tons of CH4.At CH4/CO2 equivalence of 25,this number corresponds to CO2-eq emissions of 270 million metric tons,i.e.,5.1%of the U.S.energy related carbon dioxide emissions.展开更多
In this paper,a simple method to plate a hydrophobic coating on the inner surface of a small-scaled tube was proposed,where the coating consisted of carbon microspheres.Three common plastics polystyrene,polycarbonate ...In this paper,a simple method to plate a hydrophobic coating on the inner surface of a small-scaled tube was proposed,where the coating consisted of carbon microspheres.Three common plastics polystyrene,polycarbonate and polyethylene were used as the feedstocks to be processed in supercritical water in a quartz tubular reactor.After reaction,the contact angle of droplet on the inner surface of the quartz tube was turned out to be over 100°,significantly larger than that of the blank tube 54°.When processing polystyrene in the 750℃ supercritical water for 10 min,the largest contact angle was obtained,up to 145°.Besides,in this sample,the size of carbon spheres was smallest,about 2.09μm diameter on average.When comparing among different types of plastics under the same condition,the contact angle of surface made from PC took the dominant position over that of PS and PE,124°,100°and 90°,respectively.In the sample made from PC,carbon spheres adhered into a mountainlike shape,producing a binary geometric structure.Furthermore,this research could be helpful in the discussion of plastic waste management and carbon spheres fabrication with low cost.展开更多
The fly ash generated from local pulp and paper industries was transformed into activated carbon (AC) through physical activation process in a high temperature tube furnace in this study. Effects of two factors includ...The fly ash generated from local pulp and paper industries was transformed into activated carbon (AC) through physical activation process in a high temperature tube furnace in this study. Effects of two factors including activation temperature and activation time were investigated. Iodine number (IN), methylene blue value (MBV), and surface microstructure were all analyzed to assess the adsorption capacity of different carbon samples. The surface area of the carbon sample increased significantly from 486.44 m<sup>2</sup>/g to 847.26 m<sup>2</sup>/g before and after activation. The jar tests revealed that the use of 0.5 g (AC)/L (water) has the highest adsorption effectiveness. Meanwhile, the column filtration experiment indicated more than 60% of the organic matter can be removed by the carbon barrier within 2 hours filtration. The follow-up chlorination experiment illustrated that the formation of trihalomethanes (THMs) and haloacetic acids (HAAs) could be considerably prevented after filtration. Above all, the cost-effective carbon filtration technology developed in this study can potentially be applied as a pre-treatment technology for intake source waters for local communities.展开更多
The objective of the study was actually the investigation of the effect of various organic wastes on the ability of urine in absorbing CO2. Urine alone or mixed with olive-oil-mill waste waters (O), poultry litter (P)...The objective of the study was actually the investigation of the effect of various organic wastes on the ability of urine in absorbing CO2. Urine alone or mixed with olive-oil-mill waste waters (O), poultry litter (P) or meat bone meal (M) was used on the absorption of CO2 from a gas bottle. The absorption capacity (1.35 - 2.85 gCO2/gNH4) was bigger than other solvents such as ammonia and amines. The range of CO2 absorption was significantly bigger for the organic mixtures P and PM with urine (9.1 - 11.8) g/L than urine alone 6.5 g/L. These organic wastes could be used to increase CO2 absorption in urine and reduce gas emissions.展开更多
Co-electrolysis of waste plastics and carbon dioxide(CO_(2)) into value-added chemicals or fuels is a promising pathway for a sustainable society, but efficient and selective conversion remains a challenge. Herein, a ...Co-electrolysis of waste plastics and carbon dioxide(CO_(2)) into value-added chemicals or fuels is a promising pathway for a sustainable society, but efficient and selective conversion remains a challenge. Herein, a gold-mediated nickel hydroxide(Au/Ni(OH)_(2)) is developed to oxidize waste plastic-derived ethylene glycol(EG) into formate. In-situ electrochemical experiments and theoretical results reveal that the introduction of Au favors the redox properties and EG adsorption behavior of Ni(OH)_(2). The Au/Ni(OH)_(2) catalyst shows an excellent formate selectivity of >90% at high current densities of above 100 m A cm^(-2). When coupled with sputtered bismuth(Bi) cathode for CO_(2) reduction, a high formate Faradic efficiency(FE) of 188.2% at 200 m A cm^(-2)and a good formate productivity of 7.33 mmol m^(-2)s^(-1)at 10 A are obtained in a flow cell and a zero-gap membrane electrode assembly(MEA) cell, respectively. This work demonstrates a promising strategy to convert waste plastics and CO_(2) into valuable products.展开更多
This paper aims to conduct a comprehensive exergoeconomic analysis of a novel zero-carbon-emission multi-generation system and propose a fast optimization method combined with machine learning.The detailed exergoecono...This paper aims to conduct a comprehensive exergoeconomic analysis of a novel zero-carbon-emission multi-generation system and propose a fast optimization method combined with machine learning.The detailed exergoeconomic analysis of a novel combined power,freshwater and cooling multi-generation system is performed in this study.The exergoeconomic analysis model is established by exergy flow theory.A comprehensive exergy,exergoeconomic and environmental analysis is carried out.Five critical decision variables are researched to bring out effects on the multi-generation system exergoeconomic performance.A novel fast optimization method combining genetic algorithm and Bagging neural network is proposed.The advanced nature comparison is made between the proposed system and four similar cases.Results display that increasing the turbine inlet temperature can improve exergy efficiency and decrease the total product unit cost.The multi-generation system exergy destruction directly determines exergy efficiency and total exergy destruction cost rate.The total product unit cost in the cost optimal design case is reduced by 7.7%and 25%,respectively,compared with exergy efficiency optimal design case and basic design case.Compared with four similar cases,the proposed multi-generation system has great advantages in thermodynamic performance and exergoeconomic performance.This paper can provide research methods and ideas for performance analysis and fast optimization of multi-generation system.展开更多
Considering that copper mine tailings(CMTs)are commonly mixed with ordinary Portland cement,fly ash(FA),and kaolin to produce geopolymers,to make full use of CMTs,the properties of geopolymers manufactured under diffe...Considering that copper mine tailings(CMTs)are commonly mixed with ordinary Portland cement,fly ash(FA),and kaolin to produce geopolymers,to make full use of CMTs,the properties of geopolymers manufactured under different material mass ratios and curing methods(standard curing,water bath curing,and 60℃curing)are evaluated with significantly increased dosage of CMTs.Porosity and unconfined compressive strength tests,X-ray diffraction,field emission scanning electron microscopy,and energy dispersive spectroscopy are used to determine the physical and mechanical properties,microstructure,and mineral composition of geopolymers.Finally,costs and CO 2 emissions of specimens with different material mass ratios during the preparation processes are compared.The results show that during the geopolymerization of low-calcium materials,various geopolymer gels,including calcium silicate,calcium silicoaluminate,and mainly sodium silicoaluminate gels,coexist.The solid waste,cost,and carbon dioxide emission reductions can reach 100%,166.3 yuan/t,and 73.3 kg/t,respectively.Under a curing condition of 60℃,the sample with a CMTs mass fraction of 70%and an FA mass fraction of 30%meets the requirements of porosity,compressive strength.The resource utilization of CMT and FA is realized in a more economical way.展开更多
The process of pressure leaching the converter vanadium slag with waste titanium dioxide without roasting was studied. Mineralogy analysis indicates that the con- verter vanadium slag contains mainly three mineral pha...The process of pressure leaching the converter vanadium slag with waste titanium dioxide without roasting was studied. Mineralogy analysis indicates that the con- verter vanadium slag contains mainly three mineral phases: magnetite, titanium magnetite, and silicate phase. Vana- dium is in combination with iron, titanium, manganese, aluminum, and silicon. The impacts of leaching tempera- ture, leaching time, stirring speed, liquid-to-solid ratio, and initial leaching agent concentration were investigated on the waste titanium dioxide leaching process. The results indi- cate that under the optimal conditions, the vanadium and the iron leaching rates are 96.85 % and 93.50 %, respectively, and the content of titanium is 12.6 % in the residue. The main mineral phases for the residues under the optimal operation conditions are quartz, ilmenite, anatase, and sili- cate phase, and the residues can be reused as the extraction of titanium raw materials for titanium dioxide production technology by the sulfate method.展开更多
The. objectives.of this study are to convert at laboratory s.cale agric.ultural residues into activated carbons (AC) with specific properties, to characterize them and to test them in adsorption reactor for tetracyc...The. objectives.of this study are to convert at laboratory s.cale agric.ultural residues into activated carbons (AC) with specific properties, to characterize them and to test them in adsorption reactor for tetracycline removal, a common antibiotic. Two new ACs were produced by direct activation with steam from beet pulp (BP-H2O) and peanut hu_lls (PH-H2O) in environmental friendly conditions BP-H2O and PH-H2Opresentcarbon content rangedcarbons with different intrinsic properties.展开更多
基金The Ministry of Natural Resources and Environment(No.TNMT.2022.05.04).
文摘Synthetic plastics are often considered to be materials that cannot be broken down by natural processes.One such plastic,polyethylene terephthalate(PET),is commonly used in everyday items but when these products are discarded,they can cause serious harm to the environment and human health.In this study,PET plastic waste was used to create activated carbon using a physical activation process that involved using CO2 gas.The researchers investigated the effects of different temperatures,carbonization,and activation times on the resulting activated carbon’s surface area.The activated carbon was then analyzed using scanning electron microscopy(SEM),X-ray diffraction(XRD),FTIR,and BET.The activated carbon created from PET plastic waste showed excellent absorption properties for methylene blue in aqueous solutions across a wide range of pH levels.By creating activated carbon from plastic waste,not only are environmental issues addressed,but high-value activated carbon is produced for environmental remediation purposes.
基金support of the Hong Kong University of Science and Technology through the UROP program
文摘In this study, waste tire was used as raw material for the production of activated carbons through pyrolysis. 'Fire char was first produced by carbomzation at 550℃ under nitrogen. A two tactortal design was used to optimize the production of activated carbon from tire char. The effects of several factors controlling the activation process, such as temperature (.830-930℃), time (2-6h) and percentage ot carbon dioxide (70%-100%) were investigated. The production was described mathematically as a function of these three factors. First order modeling equations were developed for surface area, yield and mesopore volume. It was concluded that the yield, BET surface area and mesopore volume of activated carbon were most sensitive to activation temperature and time while percentage of carbon dioxide in the activation gas was a less significant factor.
文摘Water supply project of drawing from the Songhua River in central cities of Jilin is taken as research object.On the basis of analyzing project characteristics and natural conditions of the project area,site selection of waste slag yard of water diversion project and design of water and soil conservation measures are discussed.Rationality of site selection of waste slag yard and pertinence of prevention and control measures of water and soil loss in waste slag yard are analyzed,and comprehensive utilization of waste slag in large-scale production and construction projects is explored.
基金financially supported by the Joint Funds of the National Natural Science Foundation of China(No.U1202274)the National Natural Science Foundation of China(No.51204040)+1 种基金the Research Fund for the Doctoral Program of Higher Education of China(No.20120042110011)the Fundamental Research Funds for the Central Universities(No.N140204015)
文摘Red mud produced in the Bayer process is a hazardous solid waste because of its high alkalinity; however, it is rich in valuable components such as titanium, iron, and aluminum. In this study, a novel calcification-carbonation method was developed to recover alkali and alumina from Bayer red mud under mild reaction conditions. Batch experiments were performed to evaluate the potential effects of im- portant parameters such as temperature, amount of CaO added, and CO2 partial pressure on the recovery of alkali and alumina. The results showed that 95.2% alkali and 75.0% alumina were recovered from red mud with decreases in the mass ratios of Na2O to Fe2O3 and of Al2O3 to Fe2O3 from 0.42 and 0.89 to 0.02 and 0.22, respectively. The processed red mud with less than 0.5wt% Na2O can potentially be used as a construction material.
基金Supported by the National Natural Science Foundation of China(51638011,51478314)the Science and Technology Plans of Tianjin(17PTSYJC00050,17ZYPTJC00060).
文摘A nitrogen and sulfur co-doped carbon has been synthesized employing egg white as a sustainable protein-rich precursor.According to CHNS elemental analysis,N,S and O heteroatoms accounted for mass fractions of 3.66%,2.28%and 19.29%respectively,and the types of surface functionalities were further characterized by FT-IR and XPS measurements.Although the carbon possessed a smaller surface area(815 m2·g-1)compared to a commercial activated carbon(1100 m2·g-1),its adsorption capacity towards Co2+reached 320.3 mg·g-1,which was over 8 times higher compared to the limited 34.0 mg·g-1 over the activate carbon.Furthermore,the carbon was found to be an efficient adsorbent towards a series of metal ions including VO2+,Cr3+,Ni2+,Cu2+and Cd2+.Combined with its environmental merits,the protein derived carbon may be a promising candidate for heavy metal pollution control.
基金support was received the Science&Technology Foundation of RIPP(PR20230092,PR20230259)the National Natural Science Foundation of China(22278419)the Key Core Technology Research(Social Development)Foundation of Suzhou(2023ss06).
文摘Mineral carbonation is a promising CO_(2) sequestration strategy that can utilize industrial wastes to convert CO_(2) into high-value CaCO_(3).This review summarizes the advancements in CO_(2) mineralization using typical industrial wastes to prepare ultrafine CaCO_(3).This work surveys the mechanisms of CO_(2) mineralization using these wastes and its capacities to synthesize CaCO_(3),evaluates the effects of carbonation pathways and operating parameters on the preparation of CaCO_(3),analyzes the current industrial application status and economics of this technology.Due to the large amount of impurities in solid wastes,the purity of CaCO_(3) prepared by indirect methods is greater than that prepared by direct methods.Crystalline CaCO_(3) includes three polymorphs.The polymorph of CaCO_(3) synthesized by carbonation process is determined the combined effects of various factors.These parameters essentially impact the nucleation and growth of CaCO_(3) by altering the CO_(2) supersaturation in the reaction system and the surface energy of CaCO_(3) grains.Increasing the initial pH of the solution and the CO_(2)flow rate favors the formation of vaterite,but calcite is formed under excessively high pH.Vaterite formation is favored at lower temperatures and residence time.With increased temperature and prolonged residence time,it passes through aragonite metastable phase and eventually transforms into calcite.Moreover,polymorph modifiers can decrease the surface energy of CaCO_(3) grains,facilitating the synthesis of vaterite.However,the large-scale application of this technology still faces many problems,including high costs,high energy consumption,low calcium leaching rate,low carbonation efficiency,and low product yield.Therefore,it is necessary to investigate ways to accelerate carbonation,optimize operating parameters,develop cost-effective agents,and understand the kinetics of CaCO_(3) nucleation and crystallization to obtain products with specific crystal forms.Furthermore,more studies on life cycle assessment(LCA)should be conducted to fully confirm the feasibility of the developed technologies.
基金supports from Zhejiang Provincial Key Research and Development Project(2019C02037)the Fundamental Research Funds for the Provincial Universities of Zhejiang(2020YQ005)+3 种基金Zhejiang Provincial Natural Science Foundation of China(LY20E020004)National Natural Science Foundation of China(31870548)Research Foundation of Talented Scholars of Zhejiang A&F University(2020FR069)151 Talent Project of Zhejiang Province.
文摘Solar interface water evaporation has been demonstrated to be an advanced method for freshwater production with high solar energy utilization.The development of evaporators with lower cost and higher efficiency is a key challenge in the manufacture of practical solar interface water evaporation devices.Herein,a bamboo leaf-derived carbon-based evaporator is designed based on the light trace simulation.And then,it is manufactured by vertical arrangement and carbonization of bamboo leaves and subsequent polyacrylamide modification.The vertically arranged carbon structure can extend the light path and increase the light-absorbing area,thus achieving excellent light absorption.Furthermore,the continuous distribution of polyacrylamide hydrogel between these vertical carbons can support high-speed water delivery and shorten the evaporation path.Therefore,this evaporator exhibits an ultrahigh average light absorption rate of~96.1%,a good water evaporation rate of 1.75 kg m^(-2) h^(-1),and an excellent solar-to-vapor efficiency of 91.9%under one sun irradiation.Furthermore,the device based on this evaporator can effectively achieve seawater desalination,heavy metal ion removal,and dye separation while completing water evaporation.And this device is highly available for actual outdoor applications and repeated recycling.
基金financially supported by the National Natural Science Foundation of China(No.51641209)。
文摘Humic acid(HA)was carbonized at 300,400 and 500℃ and then functionalized with 1 wt%–12 wt%Fe(Ⅲ)respectively[CHA300/400/500-Fe(Ⅲ)].Adsorption of such Fe(III)-functionalized carbonized HA as adsorbents to aqueous tetracycline(TC:25 mg·L^-1)was studied.The adsorption equilibrium time for CHA400-Fe(Ⅲ)to TC was 6 h faster and the adsorption removal efficiency(Re)was two times higher than that of HA/CHA.The adsorption Reof CHA400-Fe(Ⅲ)loaded 10%iron[CHA400-(10%)Fe(Ⅲ)]to TC could reach 99.8%at 8 h and still kept80.6%after 8 cycles.The adsorption kinetics were well fitted to the pseudo-second-order equation and the adsorption isotherms could be well delineated via Langmuir equations(R^2N 0.99),indicating that the homogeneous chemical adsorption of TC occurred on the adsorbents.The main adsorption mechanisms of TC were complexation Fe(III)and hydrophobic distribution.Electropositive and electronegative repulsion between TC and CHA400-(10%)Fe(Ⅲ)at lowly p H(2)and highly p H(8–10)respectively,leaded to the relatively low adsorption capacity and more notable influence of ion concentration.When the p H was between 4 and 8,TC mainly existed in neutral molecules(TCH2),so the influence of ion concentration was not obvious.The dynamic adsorption results showed that the CHA400-(10%)Fe(Ⅲ)could continuously treat about 2.4 L TC(27 mg·L^-1)wastewater with the effluent concentration as low as 0.068 mg·L^-1.Our study suggested a broad application prospect of a new,effective,lowcost and environment-friendly adsorbent CHA400-(10%)Fe(Ⅲ)for treatment of low-concentration TC polluted wastewater.
文摘This research demonstrated the feasibility of converting source-separated human urine into a solid fertilizer by means of continuous absorption and solar thermal evaporation using dried water hyacinth as adsorbent. In a preliminary experiment, the dried petioles of water hyacinth (DWH) absorbed urine in a mean rate of 18.78 ml·g-1 within 7 d, retrieving about 3.46% urine dissolved solids (UDS). In an advanced experiment, the DWH’s capacity of urine absorption declined from an initial 2.73 L·kg-1·d-1 to 0.68 L·kg-1·d-1, with a requirement of material change in about 25 effective days and an average ratio of 25 (L) to 1 (kg). Phosphorus (P2O5) concentration in the adsorbent increased from 0.46% (material baseline) to 3.14% (end product), suggesting a satisfactory recovery of the element. In field application, the urine was discharged, not in wet weather, onto the DWH via a tube connected to a waterless urinal. There are several ways to use the UDS-DWH as P(K)-rich fertilizer, e.g., making soluble fertilizer for foliage spraying to encourage prolific flowering and fruiting. Apparently, utilization of water hyacinth waste to recover dissolved plant nutrient elements from source-separated urine will benefit the environment in a wide range of perspectives. The herein innovative use of water hyacinth is also expected to be useful in the recycling of certain dissolved hazardous materials.
文摘This paper presents research on transport properties and alkali-silica reaction (ASR) susceptibility of mortars containing a pozzolanic waste generated in the fluid catalytic cracking (wFCC) unit by the Portuguese oil-refinery. For this purpose, two series of mortars were prepared by partially replacing cement with 5%, 10% and 15% of wFCC catalyst. The main difference between the two series of mortars is the sand reactivity used in their composition. The results revealed that wFCC catalyst blended cement mortars exhibit an increased resistance against capillary water absorption and chloride migration, as well as a considerable inhibition effect on deleterious ASR expansion. However, under the adopted experimental conditions the incorporation of wFCC catalyst in mortars decreases their carbonation resistance.
基金support from the Government of the Republic of Uganda through Makerere University Research and Innovations Fund(RIF1/CEDAT/015).
文摘There is an increased global demand for activated carbon(AC)in application of water treatment and purification.Water pollutants that have exhibited a greater removal efficiency by AC included but not limited to heavy metals,pharmaceuticals,pesticides,natural organic matter,disinfection by-products,and microplastics.Granular activated carbon(GAC)is mostly used in aqueous so-lutions and adsorption columns for water treatment.Commercial AC is not only costly,but also obtained from non-renewable sources.This has prompted the search for alternative renewable materials for AC production.Biomass wastes present a great potential of such materials because of their availability and carbonaceous nature.This in turn can reduce on the adverse environmental effects caused by poor disposal of these wastes.The challenges associated with biomass waste based GAC are their low strength and attrition resistance which make them easily disintegrate under aqueous phase.This paper provides a comprehensive review on recent advances in production of biomass waste based GAC for water treatment and highlights future research directions.Production parameters such as granulation conditions,use of binders,carbonization,activation methods,and their effect on textural properties are discussed.Factors influencing the adsorption capacities of the derived GACs,adsorption models,adsorption mechanisms,and their regeneration potentials are reviewed.The literature reveals that biomass waste materials can produce GAC for use in water treatment with possibilities of being regenerated.Nonetheless,there is a need to explore 1)the effect of preparation pathways on the adsorptive properties of biomass derived GAC,2)sustainable production of biomass derived GAC based on life cycle assessment and techno-economic analysis,and 3)adsorption mechanisms of GAC for removal of contaminants of emerging concerns such as microplastics and unregulated disinfection by-products.
基金This study was sponsored by the Earth Engineering Center of Columbia University in the City of New York.
文摘Analysis of the U.S.EPA(Environmental Protection Agency)database of 2,549 MSW(Municipal Solid Waste)landfills showed that there were 1,164 operating landfills in which 348 million short tons(316 million metric tons)of waste were landfilled in 2017.In total,these landfills occupy about 370 million square meters of land so it is not possible to monitor the generation of LFG(Landfill Gas)generation accurately,or collect most of the LFG generated.This study was based on the hypothesis that,on the average,methane generation is proportional to the tonnage of wastes landfilled annually.The Landfill Methane Outreach Program of the EPA(EPA-LMOP)compiles annual operating data of all methane-capturing landfills.Our analysis of the 2018 data for 396 LMOP operating landfills showed that 210 million short tons of wastes were deposited and 5.06 million short tons of methane were captured,i.e.,an average capture of 0.024-ton CH4/ton waste.On the basis of the anaerobic reaction of the DOC(Degradable Organic Carbon)in landfilled wastes,the average rate of methane generation from all operating U.S.landfills was estimated to be 0.05 ton of CH4 per ton of annual capacity;this number corresponds to bioreaction of about one half of the total organic carbon in MSW.On this basis,the average rate of CH4 emission from the 396 LMOP landfills was estimated to be 0.026-ton CH4 per annual ton of deposition and the average efficiency of LFG capture,48%.Adding up all 1,164 operating landfills,their total emission of methane was estimated at 11.9 million metric tons of CH4.At CH4/CO2 equivalence of 25,this number corresponds to CO2-eq emissions of 270 million metric tons,i.e.,5.1%of the U.S.energy related carbon dioxide emissions.
基金This work is supported by the National Key R&D Program of China(2020YFA0714400)Shaanxi Science&Technology Co-ordination&Innovation Project(2021GY-164).
文摘In this paper,a simple method to plate a hydrophobic coating on the inner surface of a small-scaled tube was proposed,where the coating consisted of carbon microspheres.Three common plastics polystyrene,polycarbonate and polyethylene were used as the feedstocks to be processed in supercritical water in a quartz tubular reactor.After reaction,the contact angle of droplet on the inner surface of the quartz tube was turned out to be over 100°,significantly larger than that of the blank tube 54°.When processing polystyrene in the 750℃ supercritical water for 10 min,the largest contact angle was obtained,up to 145°.Besides,in this sample,the size of carbon spheres was smallest,about 2.09μm diameter on average.When comparing among different types of plastics under the same condition,the contact angle of surface made from PC took the dominant position over that of PS and PE,124°,100°and 90°,respectively.In the sample made from PC,carbon spheres adhered into a mountainlike shape,producing a binary geometric structure.Furthermore,this research could be helpful in the discussion of plastic waste management and carbon spheres fabrication with low cost.
文摘The fly ash generated from local pulp and paper industries was transformed into activated carbon (AC) through physical activation process in a high temperature tube furnace in this study. Effects of two factors including activation temperature and activation time were investigated. Iodine number (IN), methylene blue value (MBV), and surface microstructure were all analyzed to assess the adsorption capacity of different carbon samples. The surface area of the carbon sample increased significantly from 486.44 m<sup>2</sup>/g to 847.26 m<sup>2</sup>/g before and after activation. The jar tests revealed that the use of 0.5 g (AC)/L (water) has the highest adsorption effectiveness. Meanwhile, the column filtration experiment indicated more than 60% of the organic matter can be removed by the carbon barrier within 2 hours filtration. The follow-up chlorination experiment illustrated that the formation of trihalomethanes (THMs) and haloacetic acids (HAAs) could be considerably prevented after filtration. Above all, the cost-effective carbon filtration technology developed in this study can potentially be applied as a pre-treatment technology for intake source waters for local communities.
文摘The objective of the study was actually the investigation of the effect of various organic wastes on the ability of urine in absorbing CO2. Urine alone or mixed with olive-oil-mill waste waters (O), poultry litter (P) or meat bone meal (M) was used on the absorption of CO2 from a gas bottle. The absorption capacity (1.35 - 2.85 gCO2/gNH4) was bigger than other solvents such as ammonia and amines. The range of CO2 absorption was significantly bigger for the organic mixtures P and PM with urine (9.1 - 11.8) g/L than urine alone 6.5 g/L. These organic wastes could be used to increase CO2 absorption in urine and reduce gas emissions.
基金the financial support from the National Key Research and Development Program of China(2019YFE0123400 and 2022YFE0114800)the Excellent Young Scholar Fund from the National Natural Science Foundation of China (22122903)+4 种基金the Tianjin Distinguished Young Scholar Fund (20JCJQJC00260)the Major Science and Technology Project of Anhui Province(202203f07020007)Anhui Conch Group Co.,Ltd.the financial support from the National Natural Science Foundation of China (22309089)the project funded by China Postdoctoral Science Foundation (2023M731800)。
文摘Co-electrolysis of waste plastics and carbon dioxide(CO_(2)) into value-added chemicals or fuels is a promising pathway for a sustainable society, but efficient and selective conversion remains a challenge. Herein, a gold-mediated nickel hydroxide(Au/Ni(OH)_(2)) is developed to oxidize waste plastic-derived ethylene glycol(EG) into formate. In-situ electrochemical experiments and theoretical results reveal that the introduction of Au favors the redox properties and EG adsorption behavior of Ni(OH)_(2). The Au/Ni(OH)_(2) catalyst shows an excellent formate selectivity of >90% at high current densities of above 100 m A cm^(-2). When coupled with sputtered bismuth(Bi) cathode for CO_(2) reduction, a high formate Faradic efficiency(FE) of 188.2% at 200 m A cm^(-2)and a good formate productivity of 7.33 mmol m^(-2)s^(-1)at 10 A are obtained in a flow cell and a zero-gap membrane electrode assembly(MEA) cell, respectively. This work demonstrates a promising strategy to convert waste plastics and CO_(2) into valuable products.
基金financial support from the Jilin provincial Development and Reform Commission(No.2023C032-7)Science Foundation of Jilin province Science and Technology Agency(No.20210203057SF)Science and Technology Development Program of Jilin province Science and Technology Agency(No.20230101211JC)。
文摘This paper aims to conduct a comprehensive exergoeconomic analysis of a novel zero-carbon-emission multi-generation system and propose a fast optimization method combined with machine learning.The detailed exergoeconomic analysis of a novel combined power,freshwater and cooling multi-generation system is performed in this study.The exergoeconomic analysis model is established by exergy flow theory.A comprehensive exergy,exergoeconomic and environmental analysis is carried out.Five critical decision variables are researched to bring out effects on the multi-generation system exergoeconomic performance.A novel fast optimization method combining genetic algorithm and Bagging neural network is proposed.The advanced nature comparison is made between the proposed system and four similar cases.Results display that increasing the turbine inlet temperature can improve exergy efficiency and decrease the total product unit cost.The multi-generation system exergy destruction directly determines exergy efficiency and total exergy destruction cost rate.The total product unit cost in the cost optimal design case is reduced by 7.7%and 25%,respectively,compared with exergy efficiency optimal design case and basic design case.Compared with four similar cases,the proposed multi-generation system has great advantages in thermodynamic performance and exergoeconomic performance.This paper can provide research methods and ideas for performance analysis and fast optimization of multi-generation system.
基金The National Natural Science Foundation of China(No.41877240)Scientific Research Foundation of Graduate School of Southeast University(No.YBPY1930).
文摘Considering that copper mine tailings(CMTs)are commonly mixed with ordinary Portland cement,fly ash(FA),and kaolin to produce geopolymers,to make full use of CMTs,the properties of geopolymers manufactured under different material mass ratios and curing methods(standard curing,water bath curing,and 60℃curing)are evaluated with significantly increased dosage of CMTs.Porosity and unconfined compressive strength tests,X-ray diffraction,field emission scanning electron microscopy,and energy dispersive spectroscopy are used to determine the physical and mechanical properties,microstructure,and mineral composition of geopolymers.Finally,costs and CO 2 emissions of specimens with different material mass ratios during the preparation processes are compared.The results show that during the geopolymerization of low-calcium materials,various geopolymer gels,including calcium silicate,calcium silicoaluminate,and mainly sodium silicoaluminate gels,coexist.The solid waste,cost,and carbon dioxide emission reductions can reach 100%,166.3 yuan/t,and 73.3 kg/t,respectively.Under a curing condition of 60℃,the sample with a CMTs mass fraction of 70%and an FA mass fraction of 30%meets the requirements of porosity,compressive strength.The resource utilization of CMT and FA is realized in a more economical way.
基金financially supported by the Chinese National Programs for High Technology Research and Development(Nos.2010AA03A405 and 2012AA062303)the National Natural Science Foundation of China(Nos.U1202274,51004033,51204040,and 50974035)+2 种基金the National Science and Technology Support Program(No.2012BAE01B02)the Fundamental Research Funds for the Central Universities(No.N100302005)the Doctoral Fund Project(No.20120042110011)
文摘The process of pressure leaching the converter vanadium slag with waste titanium dioxide without roasting was studied. Mineralogy analysis indicates that the con- verter vanadium slag contains mainly three mineral phases: magnetite, titanium magnetite, and silicate phase. Vana- dium is in combination with iron, titanium, manganese, aluminum, and silicon. The impacts of leaching tempera- ture, leaching time, stirring speed, liquid-to-solid ratio, and initial leaching agent concentration were investigated on the waste titanium dioxide leaching process. The results indi- cate that under the optimal conditions, the vanadium and the iron leaching rates are 96.85 % and 93.50 %, respectively, and the content of titanium is 12.6 % in the residue. The main mineral phases for the residues under the optimal operation conditions are quartz, ilmenite, anatase, and sili- cate phase, and the residues can be reused as the extraction of titanium raw materials for titanium dioxide production technology by the sulfate method.
文摘The. objectives.of this study are to convert at laboratory s.cale agric.ultural residues into activated carbons (AC) with specific properties, to characterize them and to test them in adsorption reactor for tetracycline removal, a common antibiotic. Two new ACs were produced by direct activation with steam from beet pulp (BP-H2O) and peanut hu_lls (PH-H2O) in environmental friendly conditions BP-H2O and PH-H2Opresentcarbon content rangedcarbons with different intrinsic properties.