In China, 10 ethnic minorities with a combined population of over 20 million people are followers of Islam. In Ningxia Hui Autonomous Region, the population is nearly 6 million, a-mong which the Islamic population is ...In China, 10 ethnic minorities with a combined population of over 20 million people are followers of Islam. In Ningxia Hui Autonomous Region, the population is nearly 6 million, a-mong which the Islamic population is about 2 million. In China as a whole, more than 20 million people enjoy eating food prepared according to Islamic guidelines, known as hal'al food.展开更多
It is unknown whether pangolins,the most trafficked mammals,play a role in the zoonotic transmission of bat coronaviruses.We report the circulation of a novel MERS-like coronavirus in Malayan pangolins,named Manis jav...It is unknown whether pangolins,the most trafficked mammals,play a role in the zoonotic transmission of bat coronaviruses.We report the circulation of a novel MERS-like coronavirus in Malayan pangolins,named Manis javanica HKU4-related coronavirus(MjHKU4r-CoV).Among 86 animals,four tested positive by pan-CoV PCR,and seven tested seropositive(11 and 12.8%).展开更多
report the circulation of a novel MERS-like coronavirus in Malayan pangolins, named Manis javanica HKU4-relatedcoronavirus (MjHKU4r-CoV). Among 86 animals, four tested positive by pan-CoV PCR, and seven tested seropos...report the circulation of a novel MERS-like coronavirus in Malayan pangolins, named Manis javanica HKU4-relatedcoronavirus (MjHKU4r-CoV). Among 86 animals, four tested positive by pan-CoV PCR, and seven tested seropositive (11 and12.8%). Four nearly identical (99.9%) genome sequences were obtained, and one virus was isolated (MjHKU4r-CoV-1). Thisvirus utilizes human dipeptidyl peptidase-4 (hDPP4) as a receptor and host proteases for cell infection, which is enhanced by afurin cleavage site that is absent in all known bat HKU4r-CoVs. The MjHKU4r-CoV-1 spike shows higher binding affinity forhDPP4, and MjHKU4r-CoV-1 has a wider host range than bat HKU4-CoV. MjHKU4r-CoV-1 is infectious and pathogenic inhuman airways and intestinal organs and in hDPP4-transgenic mice. Our study highlights the importance of pangolins as reservoirhosts of coronaviruses poised for human disease emergence.展开更多
The retina plays a fundamental role in the process of vision,serving as the primary interface between external visual stimuli and the central nervous system.Because the retina is exposed to a variety of environmental ...The retina plays a fundamental role in the process of vision,serving as the primary interface between external visual stimuli and the central nervous system.Because the retina is exposed to a variety of environmental stresses and deleterious insults,it is susceptible to a spectrum of pathological conditions that can detrimentally affect vision.This often leads to irreversible vision loss due to the injury of specific cell types.For instance,inherited retinal degeneration and age-related macular degeneration can lead to the death of photoreceptors,while conditions like glaucoma and optic nerve injury can result in the loss of ganglion cells.The precise pathological mechanisms driving retinal degeneration remain largely elusive,although research utilizing mouse models suggests that disruptions in intracellular signal transduction pathways may play a pivotal role.Signaling pathways within the retina orchestrate various aspects of retinal physiology,including phototransduction,synaptic transmission,and neuronal survival.展开更多
This letter critically evaluates Jiang et al's article on the differentiation of benign and malignant liver lesions using Emax and platelet count.Despite notable findings,significant methodological and interpretat...This letter critically evaluates Jiang et al's article on the differentiation of benign and malignant liver lesions using Emax and platelet count.Despite notable findings,significant methodological and interpretative limitations are identified.The study lacks detailed assay conditions for Emax measurement,employs inadequate statistical methods without robust multivariate analysis,and does not provide clinically relevant threshold values.The nomogram's reliance on Emax as a major diagnostic contributor is questionable due to attenuation in hepatocellular carcinoma patients with cirrhosis.Moreover,the study's limitations,such as selection bias and confounding factors,are not adequately addressed.Future research should adopt more rigorous methodologies,including prospective studies with larger cohorts and standardized protocols for biomarker measurement,to enhance validity and clinical applicability.展开更多
Soil nitrogen(N)is the main limiting nutrient for plant growth,which is sensitive to variations in the soil oxygen environment.To provide insights into plant N accumulation and yield under aerated and drip irrigation,...Soil nitrogen(N)is the main limiting nutrient for plant growth,which is sensitive to variations in the soil oxygen environment.To provide insights into plant N accumulation and yield under aerated and drip irrigation,a greenhouse tomato experiment was conducted with six treatments,including three fertilization types:inorganic fertilizer(NPK);organic fertilizer(OM);chemical(75%of applied N)+organic fertilizer(25%)(NPK+OM)under drip irrigation(DI)and aerated irrigation(AI)methods.Under Al,total soil carbon mineralization(C_(min))was significantly higher(by 5.7-7.0%)than under DI irrigation.C_(min)in the fertilizer treatments followed the order NPK+OM>OM>NPK under both AI and DI.Potentially mineralizable C(C_(0))and N(N_(0))was greater under AI than under DI.Gross N mineralization,gross nitrification,and NH_(4)^(+)immobilization rates were significantly higher under the AINPK treatment than the DINPK treatment by 2.58-3.27-,1.25-1.44-,and 1-1.26-fold,respectively.These findings demonstrated that AI and the addition of organic fertilizer accelerated the turnover of soil organic matter and N transformation processes,thereby enhancing N availability.Moreover,the combination of AI and organic fertilizer application was found to promote root growth(8.4-10.6%),increase the duration of the period of rapid N accumulation(ΔT),and increase the maximum N accumulation rate(V_(max)),subsequently encouraging aboveground dry matter accumulation.Consequently,the AI treatment yield was significantly greater(by 6.3-12.4%)than under the DI treatment.Further,N partial factor productivity(NPFP)and N harvest index(NHI)were greater under AI than under DI,by 6.3 to 12.4%,and 4.6 to 8.1%,respectively.The rankings of yield and NPFP remained consistent,with NPK+OM>OM>NPK under both AI and DI treatments.These results highlighted the positive impacts of AI and organic fertilizer application on soil N availability,N uptake,and overall crop yield in tomato.The optimal management measure was identified as the AINPK+OM treatment,which led to more efficient N management,better crop growth,higher yield,and more sustainable agricultural practices.展开更多
With the development of the new energy industry and the depletion of nickel sulfide ore resources,laterite nickel ore has become the main source of primary nickel,and nickel for power batteries has become a new growth...With the development of the new energy industry and the depletion of nickel sulfide ore resources,laterite nickel ore has become the main source of primary nickel,and nickel for power batteries has become a new growth point in consumption.This paper systematically summarizes the processes,parameters,products,recovery rates,environmental indicators,costs,advantages,disadvantages and the latest research progress of mainstream nickel extraction processes from laterite nickel ore.It also provides a comparative analysis of the environmental impact and economic efficiency of different nickel extraction processes.It is found that the current nickel extraction processes from laterite nickel ore globally for commercial production mainly include the RKEF process for producing ferronickel and the HPAL process for producing intermediate products.The former accounts for about 80%of laterite nickel ore production.Compared to each other,the investment cost per ton of nickel metal production capacity for the RKEF is about 43000$,with an operational cost of about 16000$per ton of nickel metal and a total nickel recovery rate of 77%–90%.Its products are mainly used in stainless steels.For the HPAL process,the investment cost per ton of nickel metal production capacity is about 56000$,with an operational cost of about 15000$per ton of nickel metal and a total nickel recovery rate of 83%–90%.Its products are mainly used in power batteries.The significant differences between the two lies in energy consumption and carbon emissions,with the RKEF being 2.18 and 2.37 times that of the HPAL,respectively.Although the use of clean energy can greatly reduce the operational cost and environmental impact of RKEF,if RKEF is converted to producing high Ni matte,its economic and environmental performance still cannot match that of the HPAL and oxygen-enriched side-blown processes.Therefore,it can be inferred that with the increasing demand for nickel in power batteries,HPAL and oxygen-enriched side blowing processes will play a greater role in laterite nickel extraction.展开更多
Coal gasification fine slag(FS)is a typical solid waste generated in coal gasification.Its current disposal methods of stockpil-ing and landfilling have caused serious soil and ecological hazards.Separation recovery a...Coal gasification fine slag(FS)is a typical solid waste generated in coal gasification.Its current disposal methods of stockpil-ing and landfilling have caused serious soil and ecological hazards.Separation recovery and the high-value utilization of residual carbon(RC)in FS are the keys to realizing the win-win situation of the coal chemical industry in terms of economic and environmental benefits.The structural properties,such as pore,surface functional group,and microcrystalline structures,of RC in FS(FS-RC)not only affect the flotation recovery efficiency of FS-RC but also form the basis for the high-value utilization of FS-RC.In this paper,the characteristics of FS-RC in terms of pore structure,surface functional groups,and microcrystalline structure are sorted out in accordance with gasification type and FS particle size.The reasons for the formation of the special structural properties of FS-RC are analyzed,and their influence on the flotation separation and high-value utilization of FS-RC is summarized.Separation methods based on the pore structural characterist-ics of FS-RC,such as ultrasonic pretreatment-pore-blocking flotation and pore breaking-flocculation flotation,are proposed to be the key development technologies for improving FS-RC recovery in the future.The design of low-cost,low-dose collectors containing polar bonds based on the surface and microcrystalline structures of FS-RC is proposed to be an important breakthrough point for strengthening the flotation efficiency of FS-RC in the future.The high-value utilization of FS should be based on the physicochemical structural proper-ties of FS-RC and should focus on the environmental impact of hazardous elements and the recyclability of chemical waste liquid to es-tablish an environmentally friendly utilization method.This review is of great theoretical importance for the comprehensive understand-ing of the unique structural properties of FS-RC,the breakthrough of the technological bottleneck in the efficient flotation separation of FS,and the expansion of the field of the high value-added utilization of FS-RC.展开更多
A substantial reduction in groundwater level,exacerbated by coal mining activities,is intensifying water scarcity in western China’s ecologically fragile coal mining areas.China’s national strategic goal of achievin...A substantial reduction in groundwater level,exacerbated by coal mining activities,is intensifying water scarcity in western China’s ecologically fragile coal mining areas.China’s national strategic goal of achieving a carbon peak and carbon neutrality has made eco-friendly mining that prioritizes the protection and efficient use of water resources essential.Based on the resource characteristics of mine water and heat hazards,an intensive coal-water-thermal collaborative co-mining paradigm for the duration of the mining process is proposed.An integrated system for the production,supply,and storage of mining companion resources is achieved through technologies such as roof water inrush prevention and control,hydrothermal quality improvement,and deep-injection geological storage.An active preventive and control system achieved by adjusting the mining technology and a passive system centered on multiobjective drainage and grouting treatment are suggested,in accordance with the original geological characteristics and dynamic process of water inrush.By implementing advanced multi-objective drainage,specifically designed to address the“skylight-type”water inrush mode in the Yulin mining area of Shaanxi Province,a substantial reduction of 50%in water drillings and inflow was achieved,leading to stabilized water conditions that effectively ensure subsequent safe coal mining.An integrated-energy complementary model that incorporates the clean production concept of heat utilization is also proposed.The findings indicate a potential saving of 8419 t of standard coal by using water and air heat as an alternative heating source for the Xiaojihan coalmine,resulting in an impressive energy conservation of 50.2%and a notable 24.2%reduction in carbon emissions.The ultra-deep sustained water injection of 100 m^(3)·h^(-1)in a single well would not rupture the formation or cause water leakage,and 7.87×10^(5)t of mine water could be effectively stored in the Liujiagou Formation,presenting a viable method for mine-water management in the Ordos Basin and providing insights for green and low-carbon mining.展开更多
The steel industry is a major source of CO_(2) emissions,and thus,the mitigation of carbon emissions is the most pressing challenge in this sector.In this paper,international environmental governance in the steel indu...The steel industry is a major source of CO_(2) emissions,and thus,the mitigation of carbon emissions is the most pressing challenge in this sector.In this paper,international environmental governance in the steel industry is reviewed,and the current state of development of low-carbon technologies is discussed.Additionally,low-carbon pathways for the steel industry at the current time are proposed,emphasizing prevention and treatment strategies.Furthermore,the prospects of low-carbon technologies are explored from the perspective of transitioning the energy structure to a“carbon-electricity-hydrogen”relationship.Overall,steel enterprises should adopt hydrogen-rich metallurgical technologies that are compatible with current needs and process flows in the short term,based on the carbon substitution with hydrogen(prevention)and the CCU(CO_(2) capture and utilization)concepts(treatment).Additionally,the capture and utilization of CO_(2) for steelmaking,which can assist in achieving short-term emission reduction targets but is not a long-term solution,is discussed.In conclusion,in the long term,the carbon metallurgical process should be gradually supplanted by a hydrogen-electric synergistic approach,thus transforming the energy structure of existing steelmaking processes and attaining near-zero carbon emission steelmaking technology.展开更多
Aqueous zinc metal batteries(AZMBs)are promising candidates for next-generation energy storage due to the excellent safety, environmental friendliness, natural abundance, high theoretical specific capacity, and low re...Aqueous zinc metal batteries(AZMBs)are promising candidates for next-generation energy storage due to the excellent safety, environmental friendliness, natural abundance, high theoretical specific capacity, and low redox potential of zinc(Zn) metal. However,several issues such as dendrite formation, hydrogen evolution, corrosion, and passivation of Zn metal anodes cause irreversible loss of the active materials. To solve these issues, researchers often use large amounts of excess Zn to ensure a continuous supply of active materials for Zn anodes. This leads to the ultralow utilization of Zn anodes and squanders the high energy density of AZMBs. Herein, the design strategies for AZMBs with high Zn utilization are discussed in depth, from utilizing thinner Zn foils to constructing anode-free structures with theoretical Zn utilization of 100%, which provides comprehensive guidelines for further research. Representative methods for calculating the depth of discharge of Zn anodes with different structures are first summarized. The reasonable modification strategies of Zn foil anodes, current collectors with pre-deposited Zn, and anode-free aqueous Zn metal batteries(AF-AZMBs) to improve Zn utilization are then detailed. In particular, the working mechanism of AF-AZMBs is systematically introduced. Finally, the challenges and perspectives for constructing high-utilization Zn anodes are presented.展开更多
Low-affinity nitrate transporter genes have been identified in subfamilies 4-8 of the rice nitrate transporter 1(NRT1)/peptide transporter family(NPF),but the OsNPF3 subfamily responsible for nitrate and phytohormone ...Low-affinity nitrate transporter genes have been identified in subfamilies 4-8 of the rice nitrate transporter 1(NRT1)/peptide transporter family(NPF),but the OsNPF3 subfamily responsible for nitrate and phytohormone transport and rice growth and development remains unknown.In this study,we described OsNPF3.1 as an essential nitrate and phytohormone transporter gene for rice tillering and nitrogen utilization efficiency(NUtE).OsNPF3.1 possesses four major haplotypes of its promoter sequence in 517 cultivars,and its expression is positively associated with tiller number.Its expression was higher in the basal part,culm,and leaf blade than in other parts of the plant,and was strongly induced by nitrate,abscisic acid(ABA)and gibberellin 3(GA_3)in the root and shoot of rice.Electrophysiological experiments demonstrated that OsNPF3.1 is a pH-dependent low-affinity nitrate transporter,with rice protoplast uptake assays showing it to be an ABA and GA_3 transporter.OsNPF3.1 overexpression significantly promoted ABA accumulation in the roots and GA accumulation in the basal part of the plant which inhibited axillary bud outgrowth and rice tillering,especially at high nitrate concentrations.The NUtE of OsNPF3.1-overexpressing plants was enhanced under low and medium nitrate concentrations,whereas the NUtE of OsNPF3.1 clustered regularly interspaced short palindromic repeats(CRISPR)plants was increased under high nitrate concentrations.The results indicate that OsNPF3.1 transports nitrate and phytohormones in different rice tissues under different nitrate concentrations.The altered OsNPF3.1 expression improves NUtE in the OsNPF3.1-overexpressing and CRISPR lines at low and high nitrate concentrations,respectively.展开更多
Herein,ionomer-free amorphous iridium oxide(IrO_(x))thin electrodes are first developed as highly active anodes for proton exchange membrane electrolyzer cells(PEMECs)via low-cost,environmentally friendly,and easily s...Herein,ionomer-free amorphous iridium oxide(IrO_(x))thin electrodes are first developed as highly active anodes for proton exchange membrane electrolyzer cells(PEMECs)via low-cost,environmentally friendly,and easily scalable electrodeposition at room temperature.Combined with a Nafion 117 membrane,the IrO_(x)-integrated electrode with an ultralow loading of 0.075 mg cm^(-2)delivers a high cell efficiency of about 90%,achieving more than 96%catalyst savings and 42-fold higher catalyst utilization compared to commercial catalyst-coated membrane(2 mg cm^(-2)).Additionally,the IrO_(x)electrode demonstrates superior performance,higher catalyst utilization and significantly simplified fabrication with easy scalability compared with the most previously reported anodes.Notably,the remarkable performance could be mainly due to the amorphous phase property,sufficient Ir^(3+)content,and rich surface hydroxide groups in catalysts.Overall,due to the high activity,high cell efficiency,an economical,greatly simplified and easily scalable fabrication process,and ultrahigh material utilization,the IrO_(x)electrode shows great potential to be applied in industry and accelerates the commercialization of PEMECs and renewable energy evolution.展开更多
Background Promoting the synchronization of glucose and amino acid release in the digestive tract of pigs could effectively improve dietary nitrogen utilization.The rational allocation of dietary starch sources and th...Background Promoting the synchronization of glucose and amino acid release in the digestive tract of pigs could effectively improve dietary nitrogen utilization.The rational allocation of dietary starch sources and the exploration of appropriate dietary glucose release kinetics may promote the dynamic balance of dietary glucose and amino acid supplies.However,research on the effects of diets with different glucose release kinetic profiles on amino acid absorption and portal amino acid appearance in piglets is limited.This study aimed to investigate the effects of the kinetic pattern of dietary glucose release on nitrogen utilization,the portal amino acid profile,and nutrient transporter expression in intestinal enterocytes in piglets.Methods Sixty-four barrows(15.00±1.12 kg)were randomly allotted to 4 groups and fed diets formulated with starch from corn,corn/barley,corn/sorghum,or corn/cassava combinations(diets were coded A,B,C,or D respectively).Protein retention,the concentrations of portal amino acid and glucose,and the relative expression of amino acid and glucose transporter m RNAs were investigated.In vitro digestion was used to compare the dietary glucose release profiles.Results Four piglet diets with different glucose release kinetics were constructed by adjusting starch sources.The in vivo appearance dynamics of portal glucose were consistent with those of in vitro dietary glucose release kinetics.Total nitrogen excretion was reduced in the piglets in group B,while apparent nitrogen digestibility and nitrogen retention increased(P<0.05).Regardless of the time(2 h or 4 h after morning feeding),the portal total free amino acids content and contents of some individual amino acids(Thr,Glu,Gly,Ala,and Ile)of the piglets in group B were significantly higher than those in groups A,C,and D(P<0.05).Cluster analysis showed that different glucose release kinetic patterns resulted in different portal amino acid patterns in piglets,which decreased gradually with the extension of feeding time.The portal His/Phe,Pro/Glu,Leu/Val,Lys/Met,Tyr/Ile and Ala/Gly appeared higher similarity among the diet treatments.In the anterior jejunum,the glucose transporter SGLT1 was significantly positively correlated with the amino acid transporters B0AT1,EAAC1,and CAT1.Conclusions Rational allocation of starch resources could regulate dietary glucose release kinetics.In the present study,group B(corn/barley)diet exhibited a better glucose release kinetic pattern than the other groups,which could affect the portal amino acid contents and patterns by regulating the expression of amino acid transporters in the small intestine,thereby promoting nitrogen deposition in the body,and improving the utilization efficiency of dietary nitrogen.展开更多
Photoisomerization-induced phase change are important for co-harvesting the latent heat and isomerization energy of azobenzene molecules.Chemically optimizing heat output and energy delivery at alternating temperature...Photoisomerization-induced phase change are important for co-harvesting the latent heat and isomerization energy of azobenzene molecules.Chemically optimizing heat output and energy delivery at alternating temperatures are challenging because of the differences in crystallizability and isomerization.This article reports two series of asymmetrically alkyl-grafted azobenzene(Azo-g),with and without a methyl group,that have an optically triggered phase change.Three exothermic modes were designed to utilize crystallization enthalpy(△H_(c))and photothermal(isomerization)energy(△H_(p))at different temperatures determined by the crystallization.Azo-g has high heat output(275-303 J g^(-1))by synchronously releasing△H_(c)and△H_(p)over a wide temperature range(-79℃to 25℃).We fabricated a new distributed energy utilization and delivery system to realize a temperature increase of 6.6℃at a temperature of-8℃.The findings offer insight into selective utilization of latent heat and isomerization energy by molecular optimization of crystallization and isomerization processes.展开更多
Clean and efficient recycling of spent lithium-ion batteries(LIBs)has become an urgent need to promote sustainable and rapid development of human society.Therefore,we provide a critical and comprehensive overview of th...Clean and efficient recycling of spent lithium-ion batteries(LIBs)has become an urgent need to promote sustainable and rapid development of human society.Therefore,we provide a critical and comprehensive overview of the various technologies for recycling spent LIBs,starting with lithium-ion power batteries.Recent research on raw material collection,metallurgical recovery,separation and purification is highlighted,particularly in terms of all aspects of economic efficiency,energy consumption,technology transformation and policy management.Mechanisms and pathways for transformative full-component recovery of spent LIBs are explored,revealing a clean and efficient closed-loop recovery mechanism.Optimization methods are proposed for future recycling technologies,with a focus on how future research directions can be industrialized.Ultimately,based on life-cycle assessment,the challenges of future recycling are revealed from the LIBs supply chain and stability of the supply chain of the new energy battery industry to provide an outlook on clean and efficient short process recycling technologies.This work is designed to support the sustainable development of the new energy power industry,to help meet the needs of global decarbonization strategies and to respond to the major needs of industrialized recycling.展开更多
Herbal extraction residues(HERs)cause serious environmental pollution and resource waste.In this study,a novel green route was designed for the comprehensive reutilization of all components in HERs,taking Magnolia off...Herbal extraction residues(HERs)cause serious environmental pollution and resource waste.In this study,a novel green route was designed for the comprehensive reutilization of all components in HERs,taking Magnolia officinalis residues(MOR)as an example.The reluctant structure of MOR was first destroyed by alkali pretreatment to release the functional ingredients(magnolol and honokiol)originally remaining in MOR and to make MOR more accessible for hydrolysis.A metal–organic frame material MIL-101(Cr)with a maximum absorption capacity of 255.64 mg g^(-1)was synthesized to absorb the released honokiol and magnolol from the pretreated MOR solutions,and 40 g L^(-1)reducing sugars were obtained with 81.8%enzymatic hydrolysis rate at 10%MOR solid loading.Finally,382 mg L-1β-amyrin was produced from MOR hydrolysates by an engineered yeast strain.In total,1 kg honokiol,8 kg magnolol,and 7.64 kg β-amyrin could produce from 1 ton MOR by this cleaner process with a total economic output of 170,700 RMB.展开更多
This paper studies the optimal portfolio allocation of a fund manager when he bases decisions on both the absolute level of terminal relative performance and the change value of terminal relative performance compariso...This paper studies the optimal portfolio allocation of a fund manager when he bases decisions on both the absolute level of terminal relative performance and the change value of terminal relative performance comparison to a predefined reference point. We find the optimal investment strategy by maximizing a weighted average utility of a concave utility and an Sshaped utility via a concavification technique and the martingale method. Numerical results are carried out to show the impact of the extent to which the manager pays attention to the change of relative performance related to the reference point on the optimal terminal relative performance.展开更多
Nickel is a strategic resource in social life and defense technology,playing an essential role in many fields,such as alloys and batteries.With the decrease in nickel sulfide,it is of great significance to extract nic...Nickel is a strategic resource in social life and defense technology,playing an essential role in many fields,such as alloys and batteries.With the decrease in nickel sulfide,it is of great significance to extract nickel from laterite.The limonitic laterite is a kind of rich nickel-cobalt-scandium resource.At present,there are few reviews on the extraction of limonitic laterite.This study reviews the hydrometallurgical processes for limonitic laterite ores and the methods of recovering valuable elements.The mineralogical characteristics are analyzed,and the typical mineral compositions are summarized.The main hydrometallurgical processes are compared and discussed,including reduction roasting-ammonia leaching,sulfuric acid pressure leaching,nitric acid pressure leaching,and the atmospheric nitric acid leaching(DNi process).The methods of recovering nickel,cobalt,scandium,and iron are emphatically outlined.Finally,reasonable suggestions are proposed for comprehensive utilization.This study can provide a reference for industrial development and diversified applications.展开更多
First developed 30 years ago,the Compendium of Physical Activities(Compendium)was created to provide a standardized way of measuring and classifying specific physical activities(PAs),allowing researchers and health pr...First developed 30 years ago,the Compendium of Physical Activities(Compendium)was created to provide a standardized way of measuring and classifying specific physical activities(PAs),allowing researchers and health professionals to assess the energy expenditure and health benefits associated with different PA.1Since its inception,the Compendium has been widely utilized and recognized as a fundamental PA and health resource.展开更多
文摘In China, 10 ethnic minorities with a combined population of over 20 million people are followers of Islam. In Ningxia Hui Autonomous Region, the population is nearly 6 million, a-mong which the Islamic population is about 2 million. In China as a whole, more than 20 million people enjoy eating food prepared according to Islamic guidelines, known as hal'al food.
文摘It is unknown whether pangolins,the most trafficked mammals,play a role in the zoonotic transmission of bat coronaviruses.We report the circulation of a novel MERS-like coronavirus in Malayan pangolins,named Manis javanica HKU4-related coronavirus(MjHKU4r-CoV).Among 86 animals,four tested positive by pan-CoV PCR,and seven tested seropositive(11 and 12.8%).
文摘report the circulation of a novel MERS-like coronavirus in Malayan pangolins, named Manis javanica HKU4-relatedcoronavirus (MjHKU4r-CoV). Among 86 animals, four tested positive by pan-CoV PCR, and seven tested seropositive (11 and12.8%). Four nearly identical (99.9%) genome sequences were obtained, and one virus was isolated (MjHKU4r-CoV-1). Thisvirus utilizes human dipeptidyl peptidase-4 (hDPP4) as a receptor and host proteases for cell infection, which is enhanced by afurin cleavage site that is absent in all known bat HKU4r-CoVs. The MjHKU4r-CoV-1 spike shows higher binding affinity forhDPP4, and MjHKU4r-CoV-1 has a wider host range than bat HKU4-CoV. MjHKU4r-CoV-1 is infectious and pathogenic inhuman airways and intestinal organs and in hDPP4-transgenic mice. Our study highlights the importance of pangolins as reservoirhosts of coronaviruses poised for human disease emergence.
基金supported by National Science Center(Narodowe Centrum Nauki)grant No.UMO-2019/33/B/NZ4/00587 to TB.
文摘The retina plays a fundamental role in the process of vision,serving as the primary interface between external visual stimuli and the central nervous system.Because the retina is exposed to a variety of environmental stresses and deleterious insults,it is susceptible to a spectrum of pathological conditions that can detrimentally affect vision.This often leads to irreversible vision loss due to the injury of specific cell types.For instance,inherited retinal degeneration and age-related macular degeneration can lead to the death of photoreceptors,while conditions like glaucoma and optic nerve injury can result in the loss of ganglion cells.The precise pathological mechanisms driving retinal degeneration remain largely elusive,although research utilizing mouse models suggests that disruptions in intracellular signal transduction pathways may play a pivotal role.Signaling pathways within the retina orchestrate various aspects of retinal physiology,including phototransduction,synaptic transmission,and neuronal survival.
文摘This letter critically evaluates Jiang et al's article on the differentiation of benign and malignant liver lesions using Emax and platelet count.Despite notable findings,significant methodological and interpretative limitations are identified.The study lacks detailed assay conditions for Emax measurement,employs inadequate statistical methods without robust multivariate analysis,and does not provide clinically relevant threshold values.The nomogram's reliance on Emax as a major diagnostic contributor is questionable due to attenuation in hepatocellular carcinoma patients with cirrhosis.Moreover,the study's limitations,such as selection bias and confounding factors,are not adequately addressed.Future research should adopt more rigorous methodologies,including prospective studies with larger cohorts and standardized protocols for biomarker measurement,to enhance validity and clinical applicability.
基金supported by the National Natural Science Foundation of China for Young Scholars(52109066)the Postdoctoral Science Foundation of Shaanxi Province,China(2023BSHTBZZ29)the China Postdoctoral Science Foundation(2022M712604 and 2023T160534).
文摘Soil nitrogen(N)is the main limiting nutrient for plant growth,which is sensitive to variations in the soil oxygen environment.To provide insights into plant N accumulation and yield under aerated and drip irrigation,a greenhouse tomato experiment was conducted with six treatments,including three fertilization types:inorganic fertilizer(NPK);organic fertilizer(OM);chemical(75%of applied N)+organic fertilizer(25%)(NPK+OM)under drip irrigation(DI)and aerated irrigation(AI)methods.Under Al,total soil carbon mineralization(C_(min))was significantly higher(by 5.7-7.0%)than under DI irrigation.C_(min)in the fertilizer treatments followed the order NPK+OM>OM>NPK under both AI and DI.Potentially mineralizable C(C_(0))and N(N_(0))was greater under AI than under DI.Gross N mineralization,gross nitrification,and NH_(4)^(+)immobilization rates were significantly higher under the AINPK treatment than the DINPK treatment by 2.58-3.27-,1.25-1.44-,and 1-1.26-fold,respectively.These findings demonstrated that AI and the addition of organic fertilizer accelerated the turnover of soil organic matter and N transformation processes,thereby enhancing N availability.Moreover,the combination of AI and organic fertilizer application was found to promote root growth(8.4-10.6%),increase the duration of the period of rapid N accumulation(ΔT),and increase the maximum N accumulation rate(V_(max)),subsequently encouraging aboveground dry matter accumulation.Consequently,the AI treatment yield was significantly greater(by 6.3-12.4%)than under the DI treatment.Further,N partial factor productivity(NPFP)and N harvest index(NHI)were greater under AI than under DI,by 6.3 to 12.4%,and 4.6 to 8.1%,respectively.The rankings of yield and NPFP remained consistent,with NPK+OM>OM>NPK under both AI and DI treatments.These results highlighted the positive impacts of AI and organic fertilizer application on soil N availability,N uptake,and overall crop yield in tomato.The optimal management measure was identified as the AINPK+OM treatment,which led to more efficient N management,better crop growth,higher yield,and more sustainable agricultural practices.
基金This research was jointly supported by the China Geological Survey Project(DD20211404)the Natural Science Foundation of Inner Mongolia Autonomous Region(2019LH05028).
文摘With the development of the new energy industry and the depletion of nickel sulfide ore resources,laterite nickel ore has become the main source of primary nickel,and nickel for power batteries has become a new growth point in consumption.This paper systematically summarizes the processes,parameters,products,recovery rates,environmental indicators,costs,advantages,disadvantages and the latest research progress of mainstream nickel extraction processes from laterite nickel ore.It also provides a comparative analysis of the environmental impact and economic efficiency of different nickel extraction processes.It is found that the current nickel extraction processes from laterite nickel ore globally for commercial production mainly include the RKEF process for producing ferronickel and the HPAL process for producing intermediate products.The former accounts for about 80%of laterite nickel ore production.Compared to each other,the investment cost per ton of nickel metal production capacity for the RKEF is about 43000$,with an operational cost of about 16000$per ton of nickel metal and a total nickel recovery rate of 77%–90%.Its products are mainly used in stainless steels.For the HPAL process,the investment cost per ton of nickel metal production capacity is about 56000$,with an operational cost of about 15000$per ton of nickel metal and a total nickel recovery rate of 83%–90%.Its products are mainly used in power batteries.The significant differences between the two lies in energy consumption and carbon emissions,with the RKEF being 2.18 and 2.37 times that of the HPAL,respectively.Although the use of clean energy can greatly reduce the operational cost and environmental impact of RKEF,if RKEF is converted to producing high Ni matte,its economic and environmental performance still cannot match that of the HPAL and oxygen-enriched side-blown processes.Therefore,it can be inferred that with the increasing demand for nickel in power batteries,HPAL and oxygen-enriched side blowing processes will play a greater role in laterite nickel extraction.
基金the National Natural Science Foundation of China(No.52374279)the Natural Science Foundation of Shaanxi Province(No.2023-YBGY-055).
文摘Coal gasification fine slag(FS)is a typical solid waste generated in coal gasification.Its current disposal methods of stockpil-ing and landfilling have caused serious soil and ecological hazards.Separation recovery and the high-value utilization of residual carbon(RC)in FS are the keys to realizing the win-win situation of the coal chemical industry in terms of economic and environmental benefits.The structural properties,such as pore,surface functional group,and microcrystalline structures,of RC in FS(FS-RC)not only affect the flotation recovery efficiency of FS-RC but also form the basis for the high-value utilization of FS-RC.In this paper,the characteristics of FS-RC in terms of pore structure,surface functional groups,and microcrystalline structure are sorted out in accordance with gasification type and FS particle size.The reasons for the formation of the special structural properties of FS-RC are analyzed,and their influence on the flotation separation and high-value utilization of FS-RC is summarized.Separation methods based on the pore structural characterist-ics of FS-RC,such as ultrasonic pretreatment-pore-blocking flotation and pore breaking-flocculation flotation,are proposed to be the key development technologies for improving FS-RC recovery in the future.The design of low-cost,low-dose collectors containing polar bonds based on the surface and microcrystalline structures of FS-RC is proposed to be an important breakthrough point for strengthening the flotation efficiency of FS-RC in the future.The high-value utilization of FS should be based on the physicochemical structural proper-ties of FS-RC and should focus on the environmental impact of hazardous elements and the recyclability of chemical waste liquid to es-tablish an environmentally friendly utilization method.This review is of great theoretical importance for the comprehensive understand-ing of the unique structural properties of FS-RC,the breakthrough of the technological bottleneck in the efficient flotation separation of FS,and the expansion of the field of the high value-added utilization of FS-RC.
基金supported by the National Key Research and Development Program of China(2021YFC2902004)the National Natural Science Foundation of China(42072284,42027801,and 41877186).
文摘A substantial reduction in groundwater level,exacerbated by coal mining activities,is intensifying water scarcity in western China’s ecologically fragile coal mining areas.China’s national strategic goal of achieving a carbon peak and carbon neutrality has made eco-friendly mining that prioritizes the protection and efficient use of water resources essential.Based on the resource characteristics of mine water and heat hazards,an intensive coal-water-thermal collaborative co-mining paradigm for the duration of the mining process is proposed.An integrated system for the production,supply,and storage of mining companion resources is achieved through technologies such as roof water inrush prevention and control,hydrothermal quality improvement,and deep-injection geological storage.An active preventive and control system achieved by adjusting the mining technology and a passive system centered on multiobjective drainage and grouting treatment are suggested,in accordance with the original geological characteristics and dynamic process of water inrush.By implementing advanced multi-objective drainage,specifically designed to address the“skylight-type”water inrush mode in the Yulin mining area of Shaanxi Province,a substantial reduction of 50%in water drillings and inflow was achieved,leading to stabilized water conditions that effectively ensure subsequent safe coal mining.An integrated-energy complementary model that incorporates the clean production concept of heat utilization is also proposed.The findings indicate a potential saving of 8419 t of standard coal by using water and air heat as an alternative heating source for the Xiaojihan coalmine,resulting in an impressive energy conservation of 50.2%and a notable 24.2%reduction in carbon emissions.The ultra-deep sustained water injection of 100 m^(3)·h^(-1)in a single well would not rupture the formation or cause water leakage,and 7.87×10^(5)t of mine water could be effectively stored in the Liujiagou Formation,presenting a viable method for mine-water management in the Ordos Basin and providing insights for green and low-carbon mining.
文摘The steel industry is a major source of CO_(2) emissions,and thus,the mitigation of carbon emissions is the most pressing challenge in this sector.In this paper,international environmental governance in the steel industry is reviewed,and the current state of development of low-carbon technologies is discussed.Additionally,low-carbon pathways for the steel industry at the current time are proposed,emphasizing prevention and treatment strategies.Furthermore,the prospects of low-carbon technologies are explored from the perspective of transitioning the energy structure to a“carbon-electricity-hydrogen”relationship.Overall,steel enterprises should adopt hydrogen-rich metallurgical technologies that are compatible with current needs and process flows in the short term,based on the carbon substitution with hydrogen(prevention)and the CCU(CO_(2) capture and utilization)concepts(treatment).Additionally,the capture and utilization of CO_(2) for steelmaking,which can assist in achieving short-term emission reduction targets but is not a long-term solution,is discussed.In conclusion,in the long term,the carbon metallurgical process should be gradually supplanted by a hydrogen-electric synergistic approach,thus transforming the energy structure of existing steelmaking processes and attaining near-zero carbon emission steelmaking technology.
基金the financial support from the National Natural Science Foundation of China (Grant Nos. 52201201, 52372171)the State Key Lab of Advanced Metals and Materials (Grant No. 2022Z-11)+1 种基金the Fundamental Research Funds for the Central Universities (Grant No. 00007747, 06500205)the Initiative Postdocs Supporting Program (Grant No. BX20190002)。
文摘Aqueous zinc metal batteries(AZMBs)are promising candidates for next-generation energy storage due to the excellent safety, environmental friendliness, natural abundance, high theoretical specific capacity, and low redox potential of zinc(Zn) metal. However,several issues such as dendrite formation, hydrogen evolution, corrosion, and passivation of Zn metal anodes cause irreversible loss of the active materials. To solve these issues, researchers often use large amounts of excess Zn to ensure a continuous supply of active materials for Zn anodes. This leads to the ultralow utilization of Zn anodes and squanders the high energy density of AZMBs. Herein, the design strategies for AZMBs with high Zn utilization are discussed in depth, from utilizing thinner Zn foils to constructing anode-free structures with theoretical Zn utilization of 100%, which provides comprehensive guidelines for further research. Representative methods for calculating the depth of discharge of Zn anodes with different structures are first summarized. The reasonable modification strategies of Zn foil anodes, current collectors with pre-deposited Zn, and anode-free aqueous Zn metal batteries(AF-AZMBs) to improve Zn utilization are then detailed. In particular, the working mechanism of AF-AZMBs is systematically introduced. Finally, the challenges and perspectives for constructing high-utilization Zn anodes are presented.
基金supported by the the Guizhou Provincial Excellent Young Talents Project of Science and Technology,China(YQK(2023)002)the Guizhou Provincial Science and Technology Projects,China((2022)Key 008)+2 种基金the Guizhou Provincial Science and Technology Support Plan,China((2022)Key 026)the Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province,China((2023)008)the Key Laboratory of Functional Agriculture of Guizhou Provincial Higher Education Institutions,China((2023)007)。
文摘Low-affinity nitrate transporter genes have been identified in subfamilies 4-8 of the rice nitrate transporter 1(NRT1)/peptide transporter family(NPF),but the OsNPF3 subfamily responsible for nitrate and phytohormone transport and rice growth and development remains unknown.In this study,we described OsNPF3.1 as an essential nitrate and phytohormone transporter gene for rice tillering and nitrogen utilization efficiency(NUtE).OsNPF3.1 possesses four major haplotypes of its promoter sequence in 517 cultivars,and its expression is positively associated with tiller number.Its expression was higher in the basal part,culm,and leaf blade than in other parts of the plant,and was strongly induced by nitrate,abscisic acid(ABA)and gibberellin 3(GA_3)in the root and shoot of rice.Electrophysiological experiments demonstrated that OsNPF3.1 is a pH-dependent low-affinity nitrate transporter,with rice protoplast uptake assays showing it to be an ABA and GA_3 transporter.OsNPF3.1 overexpression significantly promoted ABA accumulation in the roots and GA accumulation in the basal part of the plant which inhibited axillary bud outgrowth and rice tillering,especially at high nitrate concentrations.The NUtE of OsNPF3.1-overexpressing plants was enhanced under low and medium nitrate concentrations,whereas the NUtE of OsNPF3.1 clustered regularly interspaced short palindromic repeats(CRISPR)plants was increased under high nitrate concentrations.The results indicate that OsNPF3.1 transports nitrate and phytohormones in different rice tissues under different nitrate concentrations.The altered OsNPF3.1 expression improves NUtE in the OsNPF3.1-overexpressing and CRISPR lines at low and high nitrate concentrations,respectively.
基金the support from the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) under the Hydrogen and Fuel Cell Technologies Office Awards DE-EE0008426 and DE-EE0008423National Energy Technology Laboratory under Award DEFE0011585.
文摘Herein,ionomer-free amorphous iridium oxide(IrO_(x))thin electrodes are first developed as highly active anodes for proton exchange membrane electrolyzer cells(PEMECs)via low-cost,environmentally friendly,and easily scalable electrodeposition at room temperature.Combined with a Nafion 117 membrane,the IrO_(x)-integrated electrode with an ultralow loading of 0.075 mg cm^(-2)delivers a high cell efficiency of about 90%,achieving more than 96%catalyst savings and 42-fold higher catalyst utilization compared to commercial catalyst-coated membrane(2 mg cm^(-2)).Additionally,the IrO_(x)electrode demonstrates superior performance,higher catalyst utilization and significantly simplified fabrication with easy scalability compared with the most previously reported anodes.Notably,the remarkable performance could be mainly due to the amorphous phase property,sufficient Ir^(3+)content,and rich surface hydroxide groups in catalysts.Overall,due to the high activity,high cell efficiency,an economical,greatly simplified and easily scalable fabrication process,and ultrahigh material utilization,the IrO_(x)electrode shows great potential to be applied in industry and accelerates the commercialization of PEMECs and renewable energy evolution.
基金partially supported by the National Key Research and Development Program of China(2021YFD1300201)Jilin Province Key Research and Development Program of China(20220202044NC)。
文摘Background Promoting the synchronization of glucose and amino acid release in the digestive tract of pigs could effectively improve dietary nitrogen utilization.The rational allocation of dietary starch sources and the exploration of appropriate dietary glucose release kinetics may promote the dynamic balance of dietary glucose and amino acid supplies.However,research on the effects of diets with different glucose release kinetic profiles on amino acid absorption and portal amino acid appearance in piglets is limited.This study aimed to investigate the effects of the kinetic pattern of dietary glucose release on nitrogen utilization,the portal amino acid profile,and nutrient transporter expression in intestinal enterocytes in piglets.Methods Sixty-four barrows(15.00±1.12 kg)were randomly allotted to 4 groups and fed diets formulated with starch from corn,corn/barley,corn/sorghum,or corn/cassava combinations(diets were coded A,B,C,or D respectively).Protein retention,the concentrations of portal amino acid and glucose,and the relative expression of amino acid and glucose transporter m RNAs were investigated.In vitro digestion was used to compare the dietary glucose release profiles.Results Four piglet diets with different glucose release kinetics were constructed by adjusting starch sources.The in vivo appearance dynamics of portal glucose were consistent with those of in vitro dietary glucose release kinetics.Total nitrogen excretion was reduced in the piglets in group B,while apparent nitrogen digestibility and nitrogen retention increased(P<0.05).Regardless of the time(2 h or 4 h after morning feeding),the portal total free amino acids content and contents of some individual amino acids(Thr,Glu,Gly,Ala,and Ile)of the piglets in group B were significantly higher than those in groups A,C,and D(P<0.05).Cluster analysis showed that different glucose release kinetic patterns resulted in different portal amino acid patterns in piglets,which decreased gradually with the extension of feeding time.The portal His/Phe,Pro/Glu,Leu/Val,Lys/Met,Tyr/Ile and Ala/Gly appeared higher similarity among the diet treatments.In the anterior jejunum,the glucose transporter SGLT1 was significantly positively correlated with the amino acid transporters B0AT1,EAAC1,and CAT1.Conclusions Rational allocation of starch resources could regulate dietary glucose release kinetics.In the present study,group B(corn/barley)diet exhibited a better glucose release kinetic pattern than the other groups,which could affect the portal amino acid contents and patterns by regulating the expression of amino acid transporters in the small intestine,thereby promoting nitrogen deposition in the body,and improving the utilization efficiency of dietary nitrogen.
基金financially supported by National Key R&D Program of China(No.2022YFB3805702)the State Key Program of National Natural Science Foundation of China(No.52130303)
文摘Photoisomerization-induced phase change are important for co-harvesting the latent heat and isomerization energy of azobenzene molecules.Chemically optimizing heat output and energy delivery at alternating temperatures are challenging because of the differences in crystallizability and isomerization.This article reports two series of asymmetrically alkyl-grafted azobenzene(Azo-g),with and without a methyl group,that have an optically triggered phase change.Three exothermic modes were designed to utilize crystallization enthalpy(△H_(c))and photothermal(isomerization)energy(△H_(p))at different temperatures determined by the crystallization.Azo-g has high heat output(275-303 J g^(-1))by synchronously releasing△H_(c)and△H_(p)over a wide temperature range(-79℃to 25℃).We fabricated a new distributed energy utilization and delivery system to realize a temperature increase of 6.6℃at a temperature of-8℃.The findings offer insight into selective utilization of latent heat and isomerization energy by molecular optimization of crystallization and isomerization processes.
基金supported by the National Key R&D Program of China,China(2022YFC3902600)CAS Project for Young Scientists in Basic Research,China(YSBR-044)+1 种基金Guangdong Basic and Applied Basic Research Foundation,China(2021B1515020068)China Postdoctoral Science Foundation,China(2023M733510).
文摘Clean and efficient recycling of spent lithium-ion batteries(LIBs)has become an urgent need to promote sustainable and rapid development of human society.Therefore,we provide a critical and comprehensive overview of the various technologies for recycling spent LIBs,starting with lithium-ion power batteries.Recent research on raw material collection,metallurgical recovery,separation and purification is highlighted,particularly in terms of all aspects of economic efficiency,energy consumption,technology transformation and policy management.Mechanisms and pathways for transformative full-component recovery of spent LIBs are explored,revealing a clean and efficient closed-loop recovery mechanism.Optimization methods are proposed for future recycling technologies,with a focus on how future research directions can be industrialized.Ultimately,based on life-cycle assessment,the challenges of future recycling are revealed from the LIBs supply chain and stability of the supply chain of the new energy battery industry to provide an outlook on clean and efficient short process recycling technologies.This work is designed to support the sustainable development of the new energy power industry,to help meet the needs of global decarbonization strategies and to respond to the major needs of industrialized recycling.
基金supported by the National Key Research and Development Project(2019YFC1906601)China the Scientific and Technological Innovation Project of the Chinese Academy of Chinese Medical Sciences(C12021A04111)the Fundamental Research Funds for the Central Public Welfare Research Institutes(ZZ13-YQ-040).
文摘Herbal extraction residues(HERs)cause serious environmental pollution and resource waste.In this study,a novel green route was designed for the comprehensive reutilization of all components in HERs,taking Magnolia officinalis residues(MOR)as an example.The reluctant structure of MOR was first destroyed by alkali pretreatment to release the functional ingredients(magnolol and honokiol)originally remaining in MOR and to make MOR more accessible for hydrolysis.A metal–organic frame material MIL-101(Cr)with a maximum absorption capacity of 255.64 mg g^(-1)was synthesized to absorb the released honokiol and magnolol from the pretreated MOR solutions,and 40 g L^(-1)reducing sugars were obtained with 81.8%enzymatic hydrolysis rate at 10%MOR solid loading.Finally,382 mg L-1β-amyrin was produced from MOR hydrolysates by an engineered yeast strain.In total,1 kg honokiol,8 kg magnolol,and 7.64 kg β-amyrin could produce from 1 ton MOR by this cleaner process with a total economic output of 170,700 RMB.
基金Supported by the National Natural Science Foundation of China(12071335)the Humanities and Social Science Research Projects in Ministry of Education(20YJAZH025).
文摘This paper studies the optimal portfolio allocation of a fund manager when he bases decisions on both the absolute level of terminal relative performance and the change value of terminal relative performance comparison to a predefined reference point. We find the optimal investment strategy by maximizing a weighted average utility of a concave utility and an Sshaped utility via a concavification technique and the martingale method. Numerical results are carried out to show the impact of the extent to which the manager pays attention to the change of relative performance related to the reference point on the optimal terminal relative performance.
基金supported by the National Natural Science Foundation of China(U2202254,51974025,52034002)the Fundamental Research Funds for the Central Universities(FRF-TT-19-001).
文摘Nickel is a strategic resource in social life and defense technology,playing an essential role in many fields,such as alloys and batteries.With the decrease in nickel sulfide,it is of great significance to extract nickel from laterite.The limonitic laterite is a kind of rich nickel-cobalt-scandium resource.At present,there are few reviews on the extraction of limonitic laterite.This study reviews the hydrometallurgical processes for limonitic laterite ores and the methods of recovering valuable elements.The mineralogical characteristics are analyzed,and the typical mineral compositions are summarized.The main hydrometallurgical processes are compared and discussed,including reduction roasting-ammonia leaching,sulfuric acid pressure leaching,nitric acid pressure leaching,and the atmospheric nitric acid leaching(DNi process).The methods of recovering nickel,cobalt,scandium,and iron are emphatically outlined.Finally,reasonable suggestions are proposed for comprehensive utilization.This study can provide a reference for industrial development and diversified applications.
文摘First developed 30 years ago,the Compendium of Physical Activities(Compendium)was created to provide a standardized way of measuring and classifying specific physical activities(PAs),allowing researchers and health professionals to assess the energy expenditure and health benefits associated with different PA.1Since its inception,the Compendium has been widely utilized and recognized as a fundamental PA and health resource.