期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Prediction of blasting mean fragment size using support vector regression combined with five optimization algorithms 被引量:6
1
作者 Enming Li Fenghao Yang +3 位作者 Meiheng Ren Xiliang Zhang Jian Zhou Manoj Khandelwal 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第6期1380-1397,共18页
The main purpose of blasting operation is to produce desired and optimum mean size rock fragments.Smaller or fine fragments cause the loss of ore during loading and transportation,whereas large or coarser fragments ne... The main purpose of blasting operation is to produce desired and optimum mean size rock fragments.Smaller or fine fragments cause the loss of ore during loading and transportation,whereas large or coarser fragments need to be further processed,which enhances production cost.Therefore,accurate prediction of rock fragmentation is crucial in blasting operations.Mean fragment size(MFS) is a crucial index that measures the goodness of blasting designs.Over the past decades,various models have been proposed to evaluate and predict blasting fragmentation.Among these models,artificial intelligence(AI)-based models are becoming more popular due to their outstanding prediction results for multiinfluential factors.In this study,support vector regression(SVR) techniques are adopted as the basic prediction tools,and five types of optimization algorithms,i.e.grid search(GS),grey wolf optimization(GWO),particle swarm optimization(PSO),genetic algorithm(GA) and salp swarm algorithm(SSA),are implemented to improve the prediction performance and optimize the hyper-parameters.The prediction model involves 19 influential factors that constitute a comprehensive blasting MFS evaluation system based on AI techniques.Among all the models,the GWO-v-SVR-based model shows the best comprehensive performance in predicting MFS in blasting operation.Three types of mathematical indices,i.e.mean square error(MSE),coefficient of determination(R^(2)) and variance accounted for(VAF),are utilized for evaluating the performance of different prediction models.The R^(2),MSE and VAF values for the training set are 0.8355,0.00138 and 80.98,respectively,whereas 0.8353,0.00348 and 82.41,respectively for the testing set.Finally,sensitivity analysis is performed to understand the influence of input parameters on MFS.It shows that the most sensitive factor in blasting MFS is the uniaxial compressive strength. 展开更多
关键词 Blasting mean fragment size e-support vector regression(e-SVR) v-support vector regression(v-svr) Meta-heuristic algorithms Intelligent prediction
下载PDF
基于v-SVR的短期电力负荷预测 被引量:1
2
作者 应剑烈 华国栋 刘耀年 《东北电力大学学报》 2007年第2期43-47,共5页
提出了一种改进支持向量机(v-SVR)的电力系统短期负荷预测方法;将RBF和多项式函数作为核函数,进行了预测研究。研究结果表明,方法要比BP和模糊聚类方法具有很高的预测精度,方法是可行和有效的。
关键词 短期负荷预测 支持向量 v-svr(Support vector regression)预测 核函数
下载PDF
基于ν-SVR算法的边坡稳定性预测 被引量:40
3
作者 余志雄 周创兵 +1 位作者 李俊平 史超 《岩石力学与工程学报》 EI CAS CSCD 北大核心 2005年第14期2468-2475,共8页
提出基于一种改进支持向量机算法(ν-SVR)的边坡稳定性预测方法,直接利用边坡的特征参数快速预测边坡稳定性。为解决算法中模型选择困难的问题,用留一法设计预测模型,用网格搜索法搜索最优参数。留一法可以避免传统方法中根据经验确定... 提出基于一种改进支持向量机算法(ν-SVR)的边坡稳定性预测方法,直接利用边坡的特征参数快速预测边坡稳定性。为解决算法中模型选择困难的问题,用留一法设计预测模型,用网格搜索法搜索最优参数。留一法可以避免传统方法中根据经验确定预测模型的缺点,较为客观地获取合适的预测模型。网格搜索法可以保证搜索到合适的参数。计算结果显示,联合运用这两种方法可以获得合适的预测模型。利用该预测模型对82个圆弧破坏边坡实例中的71个实例进行学习,对另外11个实例进行推广预测,取得了较好的效果,其预测精度明显优于一种改进BP神经网络算法和常规SVR算法,与GA-BP神经网络算法相近。在此基础上,提出基于ν-SVR算法的边坡设计方法,能够快速、准确的获取不同方案下的边坡安全系数,评价其稳定性,为选择经济合理的边坡设计方案提供决策依据。 展开更多
关键词 岩土工程 支持向量机 边坡稳定性 v-svr(support vector regression)预测 边坡设计 模型选择 留一法 网格搜索法
下载PDF
An Efficient Approach to Rules-Based Optical Proximity Correction
4
作者 李卓远 吴为民 +1 位作者 王旸 洪先龙 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2003年第12期1266-1271,共6页
A new approach for rules-based optical proximity correction is presented.The discussion addresses on how to select and construct more concise and practical rules-base as well as how to apply that rules-base.Based on t... A new approach for rules-based optical proximity correction is presented.The discussion addresses on how to select and construct more concise and practical rules-base as well as how to apply that rules-base.Based on those ideas,several primary rules are suggested.The v-support vector regression method is used to generate a mathematical expression according to rule data.It enables to make correction according to any given rules parameters.Experimental results demonstrate applying rules calculated from the expression match well with that from the rule table. 展开更多
关键词 rules-base v-support vector regression OPC
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部