The main purpose of blasting operation is to produce desired and optimum mean size rock fragments.Smaller or fine fragments cause the loss of ore during loading and transportation,whereas large or coarser fragments ne...The main purpose of blasting operation is to produce desired and optimum mean size rock fragments.Smaller or fine fragments cause the loss of ore during loading and transportation,whereas large or coarser fragments need to be further processed,which enhances production cost.Therefore,accurate prediction of rock fragmentation is crucial in blasting operations.Mean fragment size(MFS) is a crucial index that measures the goodness of blasting designs.Over the past decades,various models have been proposed to evaluate and predict blasting fragmentation.Among these models,artificial intelligence(AI)-based models are becoming more popular due to their outstanding prediction results for multiinfluential factors.In this study,support vector regression(SVR) techniques are adopted as the basic prediction tools,and five types of optimization algorithms,i.e.grid search(GS),grey wolf optimization(GWO),particle swarm optimization(PSO),genetic algorithm(GA) and salp swarm algorithm(SSA),are implemented to improve the prediction performance and optimize the hyper-parameters.The prediction model involves 19 influential factors that constitute a comprehensive blasting MFS evaluation system based on AI techniques.Among all the models,the GWO-v-SVR-based model shows the best comprehensive performance in predicting MFS in blasting operation.Three types of mathematical indices,i.e.mean square error(MSE),coefficient of determination(R^(2)) and variance accounted for(VAF),are utilized for evaluating the performance of different prediction models.The R^(2),MSE and VAF values for the training set are 0.8355,0.00138 and 80.98,respectively,whereas 0.8353,0.00348 and 82.41,respectively for the testing set.Finally,sensitivity analysis is performed to understand the influence of input parameters on MFS.It shows that the most sensitive factor in blasting MFS is the uniaxial compressive strength.展开更多
A new approach for rules-based optical proximity correction is presented.The discussion addresses on how to select and construct more concise and practical rules-base as well as how to apply that rules-base.Based on t...A new approach for rules-based optical proximity correction is presented.The discussion addresses on how to select and construct more concise and practical rules-base as well as how to apply that rules-base.Based on those ideas,several primary rules are suggested.The v-support vector regression method is used to generate a mathematical expression according to rule data.It enables to make correction according to any given rules parameters.Experimental results demonstrate applying rules calculated from the expression match well with that from the rule table.展开更多
基金funded by the National Natural Science Foundation of China(Grant No.42177164)the Innovation-Driven Project of Central South University(Grant No.2020CX040)supported by China Scholarship Council(Grant No.202006370006)。
文摘The main purpose of blasting operation is to produce desired and optimum mean size rock fragments.Smaller or fine fragments cause the loss of ore during loading and transportation,whereas large or coarser fragments need to be further processed,which enhances production cost.Therefore,accurate prediction of rock fragmentation is crucial in blasting operations.Mean fragment size(MFS) is a crucial index that measures the goodness of blasting designs.Over the past decades,various models have been proposed to evaluate and predict blasting fragmentation.Among these models,artificial intelligence(AI)-based models are becoming more popular due to their outstanding prediction results for multiinfluential factors.In this study,support vector regression(SVR) techniques are adopted as the basic prediction tools,and five types of optimization algorithms,i.e.grid search(GS),grey wolf optimization(GWO),particle swarm optimization(PSO),genetic algorithm(GA) and salp swarm algorithm(SSA),are implemented to improve the prediction performance and optimize the hyper-parameters.The prediction model involves 19 influential factors that constitute a comprehensive blasting MFS evaluation system based on AI techniques.Among all the models,the GWO-v-SVR-based model shows the best comprehensive performance in predicting MFS in blasting operation.Three types of mathematical indices,i.e.mean square error(MSE),coefficient of determination(R^(2)) and variance accounted for(VAF),are utilized for evaluating the performance of different prediction models.The R^(2),MSE and VAF values for the training set are 0.8355,0.00138 and 80.98,respectively,whereas 0.8353,0.00348 and 82.41,respectively for the testing set.Finally,sensitivity analysis is performed to understand the influence of input parameters on MFS.It shows that the most sensitive factor in blasting MFS is the uniaxial compressive strength.
文摘A new approach for rules-based optical proximity correction is presented.The discussion addresses on how to select and construct more concise and practical rules-base as well as how to apply that rules-base.Based on those ideas,several primary rules are suggested.The v-support vector regression method is used to generate a mathematical expression according to rule data.It enables to make correction according to any given rules parameters.Experimental results demonstrate applying rules calculated from the expression match well with that from the rule table.