In order to enhance the mucosal immunity of anti-caries DNA vaccine, chitosan-DNA microparticles for musocal vaccination were prepared by a coacervation method. The physicochemical structure of microparticles was inve...In order to enhance the mucosal immunity of anti-caries DNA vaccine, chitosan-DNA microparticles for musocal vaccination were prepared by a coacervation method. The physicochemical structure of microparticles was investigated by a scanning electron microscope (SEM) and a cofocal laser scanning microscope (CLSM). For in-vitro studies, Hela cell was transfected by chitosan-DNA microparticles.The expression of proteins was measured by the immunohistochemical methods, and the cytotocity of chitosan in Hela cell line was determined by the MTT assay. The experimental results show that the microparticles are about 2-6 μm in size and spherical in shape. The encapsulation efficiency is 99%, and the DNA is almost captured in the micropraticles. Plasmid loaded into chitosan microparticles is distributed throughout these particles. The number of positive staining cells of chitosan-pGJA-P transfected cell is more than that of naked plasmid transfect cells, but less than that of Lipofect-DNA complex group. Chitosan was found to be less cytotoxic compared with lipofectin (p<0.01).展开更多
Introduction: The coronavirus disease 2019 (COVID-19) is an infectious disease of the respiratory tract caused by SARS-CoV-2. Since its emergence, there have been increased rates of transmission and spread, morbidity ...Introduction: The coronavirus disease 2019 (COVID-19) is an infectious disease of the respiratory tract caused by SARS-CoV-2. Since its emergence, there have been increased rates of transmission and spread, morbidity and mortality which led to the development of COVID-19 vaccines to address the pandemic. This study assessed acceptance, knowledge, attitude, and perceived risks regarding COVID-19 vaccines among pregnant women attending antenatal care at two First-Level Hospitals in Lusaka, Zambia. Materials and Methods: This was a cross-sectional study that was conducted among 241 pregnant women using a questionnaire from August 2023 to October 2023 in two First-Level Hospitals in Lusaka district, Zambia. The collected data were analyzed using IBM Statistical Package for Social Sciences (SPSS) version 22.0. Statistical analysis was performed using a Chi-square test. The statistical significance was set at a 95% confidence level. Results: Of the 241 participants, 107 (42.7%) were aged between 24 and 34 years. Overall, 64.3% accepted the COVID-19 vaccines, of which 122 (50.6%) were already vaccinated. Further, 203 (84.6%) of the pregnant women had good knowledge, and 199 (82.6%) had positive attitudes towards COVID-19 vaccines. However, 58.5% thought COVID-19 vaccines were not safe and could cause infertility. Alongside this, 70.1% thought that COVID-19 vaccines were harmful during pregnancy. Having good knowledge of COVID-19 vaccines was associated with age (p = 0.049), education status (p = 0.001), and employment status (p = 0.001). Having a positive attitude towards COVID-19 vaccines was associated with education status (p = 0.001) and employment status (p = 0.001). Conclusion: This study found that most pregnant women had good knowledge, and positive attitudes, and the majority accepted the COVID-19 vaccine. Encouragingly, most of the pregnant women who accepted the COVID-19 vaccines were already vaccinated. Most pregnant women thought that COVID-19 vaccines had side effects, were not safe, and could be harmful during pregnancy. Consequently, this could have contributed to the hesitancy to receive a vaccine among some participants. The findings of this study demonstrate the need to provide pregnant women with continuous educational programs on the benefits of vaccinations for themselves and their children.展开更多
This review aims to summarize the currently viable vaccine strategies including the approved vaccines and the those in trials for next-generation malaria vaccines.Data on malaria vaccine development was collected thro...This review aims to summarize the currently viable vaccine strategies including the approved vaccines and the those in trials for next-generation malaria vaccines.Data on malaria vaccine development was collected through a comprehensive review.The literature search was performed using databases including Google Scholar,PubMed,NIH,and Web of Science.Various novel approaches of vaccination are being developed,including those based on radiation-attenuated strategies,monoclonal antibodies,targeted immunogenic peptides,RNA and DNA vaccines,nanoparticle-based vaccines,protein-based vaccination protocols,and whole organism-based vaccination strategies.Trials on RTS,S have entered phase Ⅲtesting,and those based on blood-stage vaccines and vaccines to interrupt malarial transmission have advanced to higher stages of trials.Mathematical modeling,combined drug and vaccine strategies,mass drug administration,polyvalent vaccine formulations,and targeted vaccination campaigns is playing an important role in malarial prevention.Furthermore,assessing coverage,accessibility,acceptability,deployment,compilation,and adherence to specific vaccination strategies in endemic regions is essential for vaccination drives against malaria.展开更多
Dengue fever,caused by the dengue virus(DENV),poses a significant public health challenge globally,with Nigeria experiencing sporadic outbreaks.A clear understanding of the dengue burden has not been achieved in Niger...Dengue fever,caused by the dengue virus(DENV),poses a significant public health challenge globally,with Nigeria experiencing sporadic outbreaks.A clear understanding of the dengue burden has not been achieved in Nigeria,just as in other African countries.Understanding the epidemiology and burden of dengue fever is essential for effective prevention and control strategies.This paper examines the recent dengue outbreaks in northern Nigeria,particularly in Sokoto state,and evaluates the recommended Takeda dengue vaccine(TDV)along with future prevention strategies.Despite limited surveillance and underreporting,dengue fever is endemic in Nigeria(with over 5 million cases and 5000 dengue-related deaths in 2023),with recent outbreaks indicating a growing concern.The TDV,a live attenuated tetravalent vaccine,has shown promise in preventing dengue fever,but challenges such as vaccine acceptance and access-ibility need to be addressed.Global urbanization contributes to the disease's spread,which is influenced by factors such as population density,cultural beliefs,water storage practices,hygiene,and water supply accessibility.Future prevention strategies must focus on government intervention,community practices,and innovative vector control measures to mitigate the spread of DENV in Nigeria.This study will serve as a valuable reference for policy-makers,researchers,and clinicians in the management and control of DENV in Nigeria and Africa as a whole.展开更多
The traditional vaccines against hepatitis have been instrumental in reducing the incidence of some types of viral hepatitis;however,the need for cost-effective,easily distributable,and needle-free vaccine alternative...The traditional vaccines against hepatitis have been instrumental in reducing the incidence of some types of viral hepatitis;however,the need for cost-effective,easily distributable,and needle-free vaccine alternatives has led to the exploration of plant-based vaccines.Plant-based techniques offer a promising avenue for producing viral hepatitis vaccines due to their low-cost cultivation,scalability,and the potential for oral administration.This review highlights the successful expression of hepatitis B surface antigens in plants and the subsequent formation of virus-like particles,which have shown immunogenicity in preclinical and clinical trials.The challenges such as achieving sufficient antigen expression levels,ensuring consistent dosing,and navigating regulatory frameworks,are addressed.The review considers the potential of plant-based vaccines to meet the demands of rapid vaccine deployment in response to outbreaks and their role in global immunization strategies,particularly in resource-limited settings.This review underscores the significant strides made in plant molecular farming and the potential of plant-based vaccines to complement existing immunization methods against viral hepatitis.展开更多
Research on the synthesis of superoxide dismutase mimics by chemical and biologi-cal synthetic methods were reviewed.The advantages and limitations were analyzed.A prospect for the future development of superoxide dis...Research on the synthesis of superoxide dismutase mimics by chemical and biologi-cal synthetic methods were reviewed.The advantages and limitations were analyzed.A prospect for the future development of superoxide dismutase mimics is proposed.展开更多
Brucellosis,caused by Brucella,is one of the most common zoonosis.However,there is still no vaccine for human use.Although some live attenuated vaccines have been approved for animals,the protection effect is not idea...Brucellosis,caused by Brucella,is one of the most common zoonosis.However,there is still no vaccine for human use.Although some live attenuated vaccines have been approved for animals,the protection effect is not ideal.In this study,we developed a dual-antigen nanoconjugate vaccine containing both polysaccharide and protein antigens against Brucella.First,the antigenic polysaccharide was covalently coupled to the outer membrane protein Omp19 using protein glycan coupling technology,and then it was successfully loaded on a nano-carrier through the SpyTag/SpyCatcher system.After confirming the efficient immune activation and safety performance of the dual-antigen nanoconjugate vaccine,the potent serum antibody response against the two antigens and remarkable protective effect in non-lethal and lethal Brucella infection models were further demonstrated through different routes of administration.These results indicated that the dual-antigen nanoconjugate vaccine enhanced both T helper 1 cell(Th1)and Th2 immune responses and protected mice from Brucella infection.Furthermore,we found that this protective effect was maintained for at least 18 weeks.To our knowledge,this is the first Brucella vaccine bearing diverse antigens,including a protein and polysaccharide,on a single nanoparticle.Thus,we also present an attractive technology for co-delivery of different types of antigens using a strategy applicable to other vaccines against infectious diseases.展开更多
Transition metal phosphides(TMPs)have been regarded as alternative hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)catalysts owing to their comparable activity to those of noble metal-based catalysts...Transition metal phosphides(TMPs)have been regarded as alternative hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)catalysts owing to their comparable activity to those of noble metal-based catalysts.TMPs have been produced in various morphologies,including hollow and porous nanostructures,which are features deemed desirable for electrocatalytic materials.Templated synthesis routes are often responsible for such morphologies.This paper reviews the latest advances and existing challenges in the synthesis of TMP-based OER and HER catalysts through templated methods.A comprehensive review of the structure-property-performance of TMP-based HER and OER catalysts prepared using different templates is presented.The discussion proceeds according to application,first by HER and further divided among the types of templates used-from hard templates,sacrificial templates,and soft templates to the emerging dynamic hydrogen bubble template.OER catalysts are then reviewed and grouped according to their morphology.Finally,prospective research directions for the synthesis of hollow and porous TMP-based catalysts,such as improvements on both activity and stability of TMPs,design of environmentally benign templates and processes,and analysis of the reaction mechanism through advanced material characterization techniques and theoretical calculations,are suggested.展开更多
Zeolite catalysts have found extensive applications in the synthesis of various fine chemicals.However,the micropores of zeolites impose diffusion limitations on bulky molecules,greatly reducing the catalytic efficien...Zeolite catalysts have found extensive applications in the synthesis of various fine chemicals.However,the micropores of zeolites impose diffusion limitations on bulky molecules,greatly reducing the catalytic efficiency.Herein,we explore an economic and environmentally friendly method for synthesizing hierarchical NaX zeolite that exhibits improved catalytic performance in the Knoevenagel condensation reaction for producing the useful fine chemical 2-cyano-3-phenylacrylate.The synthesis was achieved via a low-temperature activation of kaolinite and subsequent in-situ transformation strategy without any template or seed.Systematic characterizations reveal that the synthesized NaX zeolite has both intercrystalline and intra-crystalline mesopores,smaller crystal size,and larger external specific surface area compared to commercial NaX zeolite.Detailed mechanism investigations show that the inter-crystalline mesopores are generated by stacking smaller crystals formed from in-situ crystallization of the depolymerized kaolinite,and the intra-crystalline mesopores are inherited from the pores in the depolymerized kaolinite.This synthesis strategy provides an energy-saving and effective way to construct hierarchical zeolites,which may gain wide applications in fine chemical manufacturing.展开更多
Background:Solid organ transplant(SOT)activities,such as liver transplant,have been greatly influenced by the pandemic of coronavirus disease 2019(COVID-19),a disease caused by severe acute respiratory syndrome corona...Background:Solid organ transplant(SOT)activities,such as liver transplant,have been greatly influenced by the pandemic of coronavirus disease 2019(COVID-19),a disease caused by severe acute respiratory syndrome coronavirus 2(SARS-CoV-2).Immunosuppressed individuals of liver transplant recipients(LTRs)tend to have a high risk of COVID-19 infection and related complications.Therefore,COVID-19 vaccination has been recommended to be administered as early as possible in LTRs.Data sources:The keywords“liver transplant”,“SARS-CoV-2”,and“vaccine”were used to retrieve articles published in PubMed.Results:The antibody response following the 1st and 2nd doses of vaccination was disappointingly low,and the immune responses among LTRs remarkably improved after the 3rd or 4th dose of vaccination.Although the 3rd or 4th dose of COVID-19 vaccine increased the antibody titer,a proportion of patients remained unresponsive.Furthermore,recent studies showed that SARS-CoV-2 vaccine could trigger adverse events in LTRs,including allograft rejection and liver injury.Conclusions:This review provides the recently reported data on the antibody response of LTRs following various doses of vaccine,risk factors for poor serological response and adverse events after vaccination.展开更多
Tumor vaccines are a promising avenue in cancer immunotherapy.Despite the progress in targeting specific immune epitopes,tumor cells lacking these epitopes can evade the treatment.Here,we aimed to construct an efficie...Tumor vaccines are a promising avenue in cancer immunotherapy.Despite the progress in targeting specific immune epitopes,tumor cells lacking these epitopes can evade the treatment.Here,we aimed to construct an efficient in situ tumor vaccine called Vac-SM,utilizing shikonin(SKN)to induce immunogenic cell death(ICD)and Mycobacterium smegmatis as an immune adjuvant to enhance in situ tumor vaccine efficacy.SKN showed a dose-dependent and time-dependent cytotoxic effect on the tumor cell line and induced ICD in tumor cells as evidenced by the CCK-8 assay and the detection of the expression of relevant indicators,respectively.Compared with the control group,the in situ Vac-SM injection in mouse subcutaneous metastatic tumors significantly inhibited tumor growth and distant tumor metastasis,while also improving survival rates.Mycobacterium smegmatis effectively induced maturation and activation of bone marrow-derived dendritic cells(DCs),and in vivo tumor-draining lymph nodes showed an increased maturation of DCs and a higher proportion of effector memory T-cell subsets with the Vac-SM treatment,based on flow cytometry analysis results.Collectively,the Vac-SM vaccine effectively induces ICD,improves antigen presentation by DCs,activates a specific systemic antitumor T-cell immune response,exhibits a favorable safety profile,and holds the promise for clinical translation for local tumor immunotherapy.展开更多
Zika virus(ZIKV)is the causative agent of a viral infection that causes neurological complications in newborns and adults worldwide.Its wide transmission route and alarming spread rates are of great concern to the sci...Zika virus(ZIKV)is the causative agent of a viral infection that causes neurological complications in newborns and adults worldwide.Its wide transmission route and alarming spread rates are of great concern to the scientific community.Numerous trials have been conducted to develop treatment options for ZIKV infection.This review highlights the latest developments in the fields of vaccinology and pharmaceuticals developments for ZIKV infection.A systematic and comprehensive approach was used to gather relevant and up-to-date data so that inferences could be made about the gaps in therapeutic development.The results indicate that several therapeutic interventions are being tested against ZIKV infection,such as DNA vaccines,subunit vaccines,live-attenuated vaccines,virus-vector-based vaccines,inactivated vaccines,virus-like particles,and mRNA-based vaccines.In addition,approved anti-ZIKV drugs that can reduce the global burden are discussed.Although many vaccine candidates for ZIKV are at different stages of development,none of them have received Food and Drug Authority approval for use up to now.The issue of side effects associated with these drugs in vulnerable newborns and pregnant women is a major obstacle in the therapeutic pathway.展开更多
In the realm of the synthesis of heat-integrated distillation configurations,the conventional approach for exploring more heat integration possibilities typically entails the splitting of a single column into a twocol...In the realm of the synthesis of heat-integrated distillation configurations,the conventional approach for exploring more heat integration possibilities typically entails the splitting of a single column into a twocolumn configuration.However,this approach frequently necessitates tedious enumeration procedures,resulting in a considerable computational burden.To surmount this formidable challenge,the present study introduces an innovative remedy:The proposition of a superstructure that encompasses both single-column and multiple two-column configurations.Additionally,a simultaneous optimization algorithm is applied to optimize both the process parameters and heat integration structures of the twocolumn configurations.The effectiveness of this approach is demonstrated through a case study focusing on industrial organosilicon separation.The results underscore that the superstructure methodology not only substantially mitigates computational time compared to exhaustive enumeration but also furnishes solutions that exhibit comparable performance.展开更多
Nitrogen(N)-doped carbon materials as metal catalyst supports have attracted signifi cant attention,but the eff ect of N dopants on catalytic performance remains unclear,especially for complex reaction processes such ...Nitrogen(N)-doped carbon materials as metal catalyst supports have attracted signifi cant attention,but the eff ect of N dopants on catalytic performance remains unclear,especially for complex reaction processes such as Fischer-Tropsch synthesis(FTS).Herein,we engineered ruthenium(Ru)FTS catalysts supported on N-doped carbon overlayers on TiO_(2)nanoparticles.By regulating the carbonization temperatures,we successfully controlled the types and contents of N dopants to identify their impacts on metal-support interactions(MSI).Our fi ndings revealed that N dopants establish a favorable surface environment for electron transfer from the support to the Ru species.Moreover,pyridinic N demonstrates the highest electron-donating ability,followed by pyrrolic N and graphitic N.In addition to realizing excellent catalytic stability,strengthening the interaction between Ru sites and N dopants increases the Ru^(0)/Ru^(δ+)ratios to enlarge the active site numbers and surface electron density of Ru species to enhance the strength of adsorbed CO.Consequently,it improves the catalyst’s overall performance,encompassing intrinsic and apparent activities,as well as its ability for carbon chain growth.Accordingly,the as-synthesized Ru/TiO_(2)@CN-700 catalyst with abundant pyridine N dopants exhibits a superhigh C_(5+)time yield of 219.4 mol CO/(mol Ru·h)and C_(5+)selectivity of 85.5%.展开更多
Developing a simple scalable method to fabricate electrodes with high capacity and wide voltage range is desired for the real use of electrochemical supercapacitors.Herein,we synthesized amorphous NiCo-LDH nanosheets ...Developing a simple scalable method to fabricate electrodes with high capacity and wide voltage range is desired for the real use of electrochemical supercapacitors.Herein,we synthesized amorphous NiCo-LDH nanosheets vertically aligned on activated carbon cloth substrate,which was in situ transformed from Co-metal-organic framework materials nano-columns by a simple ion exchange process at room temperature.Due to the amorphous and vertically aligned ultrathin structure of NiCo-LDH,the NiCo-LDH/activated carbon cloth composites present high areal capacities of 3770 and 1480 mF cm^(-2)as cathode and anode at 2 mA cm^(-2),and 79.5%and 80%capacity have been preserved at 50 mA cm^(-2).In the meantime,they all showed excellent cycling performance with negligible change after>10000 cycles.By fabricating them into an asymmetric supercapacitor,the device achieves high energy densities(5.61 mWh cm^(-2)and 0.352 mW cm^(-3)).This work provides an innovative strategy for simplifying the design of supercapacitors as well as providing a new understanding of improving the rate capabilities/cycling stability of NiCo-LDH materials.展开更多
Rotaviruses, noroviruses, and astroviruses are responsible for gastroenteritis in children under 5 years old. The objective of our study was to estimate the evolution of prevalence of rotavirus, norovirus and astrovir...Rotaviruses, noroviruses, and astroviruses are responsible for gastroenteritis in children under 5 years old. The objective of our study was to estimate the evolution of prevalence of rotavirus, norovirus and astrovirus infections in children aged 0 to 5 years with gastroenteritis, after the introduction of rotavirus vaccines in Burkina Faso. This cross-sectional study was conducted between January and December 2023, collecting 100 stool samples from children with gastroenteritis at Saint Camille Hospital in Ouagadougou and the Charles De Gaulle University Paediatric Hospital. Noroviruses and astroviruses were detected using multiplex real-time PCR with a Sacace biotechnology detection kit. Data analysis was performed with Stata statistical software, version 16.0. The prevalence of norovirus infections was 14% and astrovirus infections were 9%. Rotavirus infections were found at prevalence of 15%. The age group most affected by norovirus and astrovirus infections was 0 - 12 months, with respective prevalence rates of 73.34% and 55.56%. The most frequently observed clinical signs in children infected with astrovirus were fever (77.78%), diarrhea (55.56%), and vomiting (44.44%). The introduction of rotavirus vaccines has reduced rotavirus-related infections. However, this has not significantly impacted the prevalence of norovirus and astrovirus infections in Burkina Faso.展开更多
Introduction: As new vaccines become available, countries must assess the relevance to introduce them into their vaccination schedules. Malawi has recently introduced several new vaccines and plans to introduce more. ...Introduction: As new vaccines become available, countries must assess the relevance to introduce them into their vaccination schedules. Malawi has recently introduced several new vaccines and plans to introduce more. This study was conducted to identify key factors that need to be considered when deciding to introduce a new vaccine and current challenges faced by low and middle income countries using Malawi as an example. Methodology: The study employed a desk review approach, examining published literature from various sources such as PubMed, Medline, and Google Scholar. Policy documents from organizations like the World Health Organization, GAVI the Alliance, and the Ministry of Health for Malawi were also included. A total of 99 articles and documents on new vaccine introduction, challenges of immunization, policy documents in immunization and health systems strengthening were included. The review focused on addressing five key areas critical to new vaccine introduction namely: the need for a vaccine, availability of the vaccine, safety and effectiveness of the vaccine, demand for the vaccine, and the prudent use of public or private funds. Results: Malawi considered the burden of cervical cancer and the significance of malaria in the country when introducing the HPV and malaria vaccines. The country opted for vaccines that can be handled by the cold chain capacity and available human resources. Despite that malaria vaccine and Typhoid Conjugate Vaccine trials were done in country, there are limited vaccine safety and efficacy trials conducted in Malawi, leading to a reliance on WHO-prequalified vaccines. Demand for newly introduced vaccines varied, with high demand for Oral Cholera Vaccine during a cholera outbreak, while demand for COVID-19 vaccines decreased over time. Although cost-effectiveness studies were limited in the country, 2 studies indicated that Typhoid Conjugate Vaccine and malaria vaccine would be cost effective. All these have been implemented despite having challenges like lack of accurate surveillance data, inadequate cold chain capacity, limited safety and efficacy vaccine clinical trials, political influence, and limited funding. Conclusion: Despite several challenges Malawi set a good example of the careful considerations required before introducing a new vaccine. The process involves data review, priority setting, precise planning, and consultation with stakeholders. Low-income countries should invest in vaccine safety, efficacy, and cost-effectiveness trials.展开更多
COVID-19, a contagious respiratory disease, presents immediate and unforeseen challenges to people worldwide. Moreover, its transmission rapidly extends globally due to its viral transmissibility, emergence of novel s...COVID-19, a contagious respiratory disease, presents immediate and unforeseen challenges to people worldwide. Moreover, its transmission rapidly extends globally due to its viral transmissibility, emergence of novel strains (variants), absence of immunity, and human unawareness. This framework introduces a revised epidemic model, drawing upon mathematical principles. This model incorporates a modified vaccination and lockdown approach to comprehensively depict an epidemics transmission, containment, and decision-making processes within a community. This study aims to provide policymakers with precise information on real-world situations to assist them in making informed decisions about the implementation of lockdown strategies, maintenance variables, and vaccine availability. The suggested model has conducted stability analysis, strength number analysis, and first and second-order derivative analysis of the Lyapunov function and has established the existence and uniqueness of solutions of the proposed models. We examine the combined effects of an effective vaccination campaign and non-pharmaceutical measures such as lockdowns and states of emergency. We rely on the results of this research to assist policymakers in various countries in eradicating the illness by developing more innovative measures to control the outbreak.展开更多
Avian metapneumovirus(aMPV) is a highly contagious pathogen that causes acute upper respiratory tract diseases in chickens and turkeys, resulting in serious economic losses. Subtype B aMPV has recently become the domi...Avian metapneumovirus(aMPV) is a highly contagious pathogen that causes acute upper respiratory tract diseases in chickens and turkeys, resulting in serious economic losses. Subtype B aMPV has recently become the dominant epidemic strain in China. We developed an attenuated aMPV subtype B strain by serial passaging in Vero cells and evaluated its safety and efficacy as a vaccine candidate. The safety test showed that after the 30th passage, the LN16-A strain was fully attenuated, as clinical signs of infection and histological lesions were absent after inoculation.The LN16-A strain did not revert to a virulent strain after five serial passages in chickens. The genomic sequence of LN16-A differed from that of the parent wild-type LN16(wtLN16) strain and had nine amino acid mutations. In chickens, a single immunization with LN16-A induced robust humoral and cellular immune responses, including the abundant production of neutralizing antibodies, CD4^(+) T lymphocytes, and the Th1(IFN-γ) and Th2(IL-4 and IL-6)cytokines. We also confirmed that LN16-A provided 100% protection against subtype B aMPV and significantly reduced viral shedding and turbinate inflammation. Our findings suggest that the LN16-A strain is a promising live attenuated vaccine candidate that can prevent infection with subtype B aMPV.展开更多
文摘In order to enhance the mucosal immunity of anti-caries DNA vaccine, chitosan-DNA microparticles for musocal vaccination were prepared by a coacervation method. The physicochemical structure of microparticles was investigated by a scanning electron microscope (SEM) and a cofocal laser scanning microscope (CLSM). For in-vitro studies, Hela cell was transfected by chitosan-DNA microparticles.The expression of proteins was measured by the immunohistochemical methods, and the cytotocity of chitosan in Hela cell line was determined by the MTT assay. The experimental results show that the microparticles are about 2-6 μm in size and spherical in shape. The encapsulation efficiency is 99%, and the DNA is almost captured in the micropraticles. Plasmid loaded into chitosan microparticles is distributed throughout these particles. The number of positive staining cells of chitosan-pGJA-P transfected cell is more than that of naked plasmid transfect cells, but less than that of Lipofect-DNA complex group. Chitosan was found to be less cytotoxic compared with lipofectin (p<0.01).
文摘Introduction: The coronavirus disease 2019 (COVID-19) is an infectious disease of the respiratory tract caused by SARS-CoV-2. Since its emergence, there have been increased rates of transmission and spread, morbidity and mortality which led to the development of COVID-19 vaccines to address the pandemic. This study assessed acceptance, knowledge, attitude, and perceived risks regarding COVID-19 vaccines among pregnant women attending antenatal care at two First-Level Hospitals in Lusaka, Zambia. Materials and Methods: This was a cross-sectional study that was conducted among 241 pregnant women using a questionnaire from August 2023 to October 2023 in two First-Level Hospitals in Lusaka district, Zambia. The collected data were analyzed using IBM Statistical Package for Social Sciences (SPSS) version 22.0. Statistical analysis was performed using a Chi-square test. The statistical significance was set at a 95% confidence level. Results: Of the 241 participants, 107 (42.7%) were aged between 24 and 34 years. Overall, 64.3% accepted the COVID-19 vaccines, of which 122 (50.6%) were already vaccinated. Further, 203 (84.6%) of the pregnant women had good knowledge, and 199 (82.6%) had positive attitudes towards COVID-19 vaccines. However, 58.5% thought COVID-19 vaccines were not safe and could cause infertility. Alongside this, 70.1% thought that COVID-19 vaccines were harmful during pregnancy. Having good knowledge of COVID-19 vaccines was associated with age (p = 0.049), education status (p = 0.001), and employment status (p = 0.001). Having a positive attitude towards COVID-19 vaccines was associated with education status (p = 0.001) and employment status (p = 0.001). Conclusion: This study found that most pregnant women had good knowledge, and positive attitudes, and the majority accepted the COVID-19 vaccine. Encouragingly, most of the pregnant women who accepted the COVID-19 vaccines were already vaccinated. Most pregnant women thought that COVID-19 vaccines had side effects, were not safe, and could be harmful during pregnancy. Consequently, this could have contributed to the hesitancy to receive a vaccine among some participants. The findings of this study demonstrate the need to provide pregnant women with continuous educational programs on the benefits of vaccinations for themselves and their children.
文摘This review aims to summarize the currently viable vaccine strategies including the approved vaccines and the those in trials for next-generation malaria vaccines.Data on malaria vaccine development was collected through a comprehensive review.The literature search was performed using databases including Google Scholar,PubMed,NIH,and Web of Science.Various novel approaches of vaccination are being developed,including those based on radiation-attenuated strategies,monoclonal antibodies,targeted immunogenic peptides,RNA and DNA vaccines,nanoparticle-based vaccines,protein-based vaccination protocols,and whole organism-based vaccination strategies.Trials on RTS,S have entered phase Ⅲtesting,and those based on blood-stage vaccines and vaccines to interrupt malarial transmission have advanced to higher stages of trials.Mathematical modeling,combined drug and vaccine strategies,mass drug administration,polyvalent vaccine formulations,and targeted vaccination campaigns is playing an important role in malarial prevention.Furthermore,assessing coverage,accessibility,acceptability,deployment,compilation,and adherence to specific vaccination strategies in endemic regions is essential for vaccination drives against malaria.
文摘Dengue fever,caused by the dengue virus(DENV),poses a significant public health challenge globally,with Nigeria experiencing sporadic outbreaks.A clear understanding of the dengue burden has not been achieved in Nigeria,just as in other African countries.Understanding the epidemiology and burden of dengue fever is essential for effective prevention and control strategies.This paper examines the recent dengue outbreaks in northern Nigeria,particularly in Sokoto state,and evaluates the recommended Takeda dengue vaccine(TDV)along with future prevention strategies.Despite limited surveillance and underreporting,dengue fever is endemic in Nigeria(with over 5 million cases and 5000 dengue-related deaths in 2023),with recent outbreaks indicating a growing concern.The TDV,a live attenuated tetravalent vaccine,has shown promise in preventing dengue fever,but challenges such as vaccine acceptance and access-ibility need to be addressed.Global urbanization contributes to the disease's spread,which is influenced by factors such as population density,cultural beliefs,water storage practices,hygiene,and water supply accessibility.Future prevention strategies must focus on government intervention,community practices,and innovative vector control measures to mitigate the spread of DENV in Nigeria.This study will serve as a valuable reference for policy-makers,researchers,and clinicians in the management and control of DENV in Nigeria and Africa as a whole.
文摘The traditional vaccines against hepatitis have been instrumental in reducing the incidence of some types of viral hepatitis;however,the need for cost-effective,easily distributable,and needle-free vaccine alternatives has led to the exploration of plant-based vaccines.Plant-based techniques offer a promising avenue for producing viral hepatitis vaccines due to their low-cost cultivation,scalability,and the potential for oral administration.This review highlights the successful expression of hepatitis B surface antigens in plants and the subsequent formation of virus-like particles,which have shown immunogenicity in preclinical and clinical trials.The challenges such as achieving sufficient antigen expression levels,ensuring consistent dosing,and navigating regulatory frameworks,are addressed.The review considers the potential of plant-based vaccines to meet the demands of rapid vaccine deployment in response to outbreaks and their role in global immunization strategies,particularly in resource-limited settings.This review underscores the significant strides made in plant molecular farming and the potential of plant-based vaccines to complement existing immunization methods against viral hepatitis.
文摘Research on the synthesis of superoxide dismutase mimics by chemical and biologi-cal synthetic methods were reviewed.The advantages and limitations were analyzed.A prospect for the future development of superoxide dismutase mimics is proposed.
基金supported by the National Key Research and Development Program of China(2021YFC2102100)the National Natural Science Foundation of China(U20A20361,32271507,81930122,and 82171819)the Beijing Postdoctoral Research Foundation(2021-ZZ-035)。
文摘Brucellosis,caused by Brucella,is one of the most common zoonosis.However,there is still no vaccine for human use.Although some live attenuated vaccines have been approved for animals,the protection effect is not ideal.In this study,we developed a dual-antigen nanoconjugate vaccine containing both polysaccharide and protein antigens against Brucella.First,the antigenic polysaccharide was covalently coupled to the outer membrane protein Omp19 using protein glycan coupling technology,and then it was successfully loaded on a nano-carrier through the SpyTag/SpyCatcher system.After confirming the efficient immune activation and safety performance of the dual-antigen nanoconjugate vaccine,the potent serum antibody response against the two antigens and remarkable protective effect in non-lethal and lethal Brucella infection models were further demonstrated through different routes of administration.These results indicated that the dual-antigen nanoconjugate vaccine enhanced both T helper 1 cell(Th1)and Th2 immune responses and protected mice from Brucella infection.Furthermore,we found that this protective effect was maintained for at least 18 weeks.To our knowledge,this is the first Brucella vaccine bearing diverse antigens,including a protein and polysaccharide,on a single nanoparticle.Thus,we also present an attractive technology for co-delivery of different types of antigens using a strategy applicable to other vaccines against infectious diseases.
基金the support from the CIPHER Project(IIID 2018-008)funded by the Commission on Higher Education-Philippine California Advanced Research Institutes(CHED-PCARI)。
文摘Transition metal phosphides(TMPs)have been regarded as alternative hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)catalysts owing to their comparable activity to those of noble metal-based catalysts.TMPs have been produced in various morphologies,including hollow and porous nanostructures,which are features deemed desirable for electrocatalytic materials.Templated synthesis routes are often responsible for such morphologies.This paper reviews the latest advances and existing challenges in the synthesis of TMP-based OER and HER catalysts through templated methods.A comprehensive review of the structure-property-performance of TMP-based HER and OER catalysts prepared using different templates is presented.The discussion proceeds according to application,first by HER and further divided among the types of templates used-from hard templates,sacrificial templates,and soft templates to the emerging dynamic hydrogen bubble template.OER catalysts are then reviewed and grouped according to their morphology.Finally,prospective research directions for the synthesis of hollow and porous TMP-based catalysts,such as improvements on both activity and stability of TMPs,design of environmentally benign templates and processes,and analysis of the reaction mechanism through advanced material characterization techniques and theoretical calculations,are suggested.
基金The financial supports from the National Natural Science Foundation of China (22178059, 22208054 and 22072019)Natural Science Foundation of Fujian Province, China (2020J01513)+1 种基金Sinochem Quanzhou Energy Technology Co., Ltd. (ZHQZKJ-19-F-ZS0076)Qingyuan Innovation Laboratory (00121002)
文摘Zeolite catalysts have found extensive applications in the synthesis of various fine chemicals.However,the micropores of zeolites impose diffusion limitations on bulky molecules,greatly reducing the catalytic efficiency.Herein,we explore an economic and environmentally friendly method for synthesizing hierarchical NaX zeolite that exhibits improved catalytic performance in the Knoevenagel condensation reaction for producing the useful fine chemical 2-cyano-3-phenylacrylate.The synthesis was achieved via a low-temperature activation of kaolinite and subsequent in-situ transformation strategy without any template or seed.Systematic characterizations reveal that the synthesized NaX zeolite has both intercrystalline and intra-crystalline mesopores,smaller crystal size,and larger external specific surface area compared to commercial NaX zeolite.Detailed mechanism investigations show that the inter-crystalline mesopores are generated by stacking smaller crystals formed from in-situ crystallization of the depolymerized kaolinite,and the intra-crystalline mesopores are inherited from the pores in the depolymerized kaolinite.This synthesis strategy provides an energy-saving and effective way to construct hierarchical zeolites,which may gain wide applications in fine chemical manufacturing.
基金the National Natural Science Foundation of China(82103662).
文摘Background:Solid organ transplant(SOT)activities,such as liver transplant,have been greatly influenced by the pandemic of coronavirus disease 2019(COVID-19),a disease caused by severe acute respiratory syndrome coronavirus 2(SARS-CoV-2).Immunosuppressed individuals of liver transplant recipients(LTRs)tend to have a high risk of COVID-19 infection and related complications.Therefore,COVID-19 vaccination has been recommended to be administered as early as possible in LTRs.Data sources:The keywords“liver transplant”,“SARS-CoV-2”,and“vaccine”were used to retrieve articles published in PubMed.Results:The antibody response following the 1st and 2nd doses of vaccination was disappointingly low,and the immune responses among LTRs remarkably improved after the 3rd or 4th dose of vaccination.Although the 3rd or 4th dose of COVID-19 vaccine increased the antibody titer,a proportion of patients remained unresponsive.Furthermore,recent studies showed that SARS-CoV-2 vaccine could trigger adverse events in LTRs,including allograft rejection and liver injury.Conclusions:This review provides the recently reported data on the antibody response of LTRs following various doses of vaccine,risk factors for poor serological response and adverse events after vaccination.
基金supported by grants from the Natural Science Foundation of Huai'an Science and Technology Bureau(Grant No.HAB202312)the Science and Technology Development Fund of the Affiliated Hospital of Xuzhou Medical University(Grant No.XYFY2021018).
文摘Tumor vaccines are a promising avenue in cancer immunotherapy.Despite the progress in targeting specific immune epitopes,tumor cells lacking these epitopes can evade the treatment.Here,we aimed to construct an efficient in situ tumor vaccine called Vac-SM,utilizing shikonin(SKN)to induce immunogenic cell death(ICD)and Mycobacterium smegmatis as an immune adjuvant to enhance in situ tumor vaccine efficacy.SKN showed a dose-dependent and time-dependent cytotoxic effect on the tumor cell line and induced ICD in tumor cells as evidenced by the CCK-8 assay and the detection of the expression of relevant indicators,respectively.Compared with the control group,the in situ Vac-SM injection in mouse subcutaneous metastatic tumors significantly inhibited tumor growth and distant tumor metastasis,while also improving survival rates.Mycobacterium smegmatis effectively induced maturation and activation of bone marrow-derived dendritic cells(DCs),and in vivo tumor-draining lymph nodes showed an increased maturation of DCs and a higher proportion of effector memory T-cell subsets with the Vac-SM treatment,based on flow cytometry analysis results.Collectively,the Vac-SM vaccine effectively induces ICD,improves antigen presentation by DCs,activates a specific systemic antitumor T-cell immune response,exhibits a favorable safety profile,and holds the promise for clinical translation for local tumor immunotherapy.
基金This work is supported by the United Arab Emirates University UPAR(Grant No.G3458).
文摘Zika virus(ZIKV)is the causative agent of a viral infection that causes neurological complications in newborns and adults worldwide.Its wide transmission route and alarming spread rates are of great concern to the scientific community.Numerous trials have been conducted to develop treatment options for ZIKV infection.This review highlights the latest developments in the fields of vaccinology and pharmaceuticals developments for ZIKV infection.A systematic and comprehensive approach was used to gather relevant and up-to-date data so that inferences could be made about the gaps in therapeutic development.The results indicate that several therapeutic interventions are being tested against ZIKV infection,such as DNA vaccines,subunit vaccines,live-attenuated vaccines,virus-vector-based vaccines,inactivated vaccines,virus-like particles,and mRNA-based vaccines.In addition,approved anti-ZIKV drugs that can reduce the global burden are discussed.Although many vaccine candidates for ZIKV are at different stages of development,none of them have received Food and Drug Authority approval for use up to now.The issue of side effects associated with these drugs in vulnerable newborns and pregnant women is a major obstacle in the therapeutic pathway.
文摘In the realm of the synthesis of heat-integrated distillation configurations,the conventional approach for exploring more heat integration possibilities typically entails the splitting of a single column into a twocolumn configuration.However,this approach frequently necessitates tedious enumeration procedures,resulting in a considerable computational burden.To surmount this formidable challenge,the present study introduces an innovative remedy:The proposition of a superstructure that encompasses both single-column and multiple two-column configurations.Additionally,a simultaneous optimization algorithm is applied to optimize both the process parameters and heat integration structures of the twocolumn configurations.The effectiveness of this approach is demonstrated through a case study focusing on industrial organosilicon separation.The results underscore that the superstructure methodology not only substantially mitigates computational time compared to exhaustive enumeration but also furnishes solutions that exhibit comparable performance.
基金the financial support from by the National Key Research and Development Program of China(No.2022YFB4101800)National Natural Science Foundation of China(No.22278298)Program for Introducing Talents of Discipline to Universities of China(No.BP0618007).
文摘Nitrogen(N)-doped carbon materials as metal catalyst supports have attracted signifi cant attention,but the eff ect of N dopants on catalytic performance remains unclear,especially for complex reaction processes such as Fischer-Tropsch synthesis(FTS).Herein,we engineered ruthenium(Ru)FTS catalysts supported on N-doped carbon overlayers on TiO_(2)nanoparticles.By regulating the carbonization temperatures,we successfully controlled the types and contents of N dopants to identify their impacts on metal-support interactions(MSI).Our fi ndings revealed that N dopants establish a favorable surface environment for electron transfer from the support to the Ru species.Moreover,pyridinic N demonstrates the highest electron-donating ability,followed by pyrrolic N and graphitic N.In addition to realizing excellent catalytic stability,strengthening the interaction between Ru sites and N dopants increases the Ru^(0)/Ru^(δ+)ratios to enlarge the active site numbers and surface electron density of Ru species to enhance the strength of adsorbed CO.Consequently,it improves the catalyst’s overall performance,encompassing intrinsic and apparent activities,as well as its ability for carbon chain growth.Accordingly,the as-synthesized Ru/TiO_(2)@CN-700 catalyst with abundant pyridine N dopants exhibits a superhigh C_(5+)time yield of 219.4 mol CO/(mol Ru·h)and C_(5+)selectivity of 85.5%.
基金the funding from Natural Science Foundation of China(No.52003163)Guangdong Basic and Applied Basic Research Foundation(No.2022A1515010670)+1 种基金Science and Technology Innovation Commission of Shenzhen(Nos.KQTD20170810105439418 and 20200812112006001)NTUT-SZU Joint Research Program(Nos.2022005 and 2022015)
文摘Developing a simple scalable method to fabricate electrodes with high capacity and wide voltage range is desired for the real use of electrochemical supercapacitors.Herein,we synthesized amorphous NiCo-LDH nanosheets vertically aligned on activated carbon cloth substrate,which was in situ transformed from Co-metal-organic framework materials nano-columns by a simple ion exchange process at room temperature.Due to the amorphous and vertically aligned ultrathin structure of NiCo-LDH,the NiCo-LDH/activated carbon cloth composites present high areal capacities of 3770 and 1480 mF cm^(-2)as cathode and anode at 2 mA cm^(-2),and 79.5%and 80%capacity have been preserved at 50 mA cm^(-2).In the meantime,they all showed excellent cycling performance with negligible change after>10000 cycles.By fabricating them into an asymmetric supercapacitor,the device achieves high energy densities(5.61 mWh cm^(-2)and 0.352 mW cm^(-3)).This work provides an innovative strategy for simplifying the design of supercapacitors as well as providing a new understanding of improving the rate capabilities/cycling stability of NiCo-LDH materials.
文摘Rotaviruses, noroviruses, and astroviruses are responsible for gastroenteritis in children under 5 years old. The objective of our study was to estimate the evolution of prevalence of rotavirus, norovirus and astrovirus infections in children aged 0 to 5 years with gastroenteritis, after the introduction of rotavirus vaccines in Burkina Faso. This cross-sectional study was conducted between January and December 2023, collecting 100 stool samples from children with gastroenteritis at Saint Camille Hospital in Ouagadougou and the Charles De Gaulle University Paediatric Hospital. Noroviruses and astroviruses were detected using multiplex real-time PCR with a Sacace biotechnology detection kit. Data analysis was performed with Stata statistical software, version 16.0. The prevalence of norovirus infections was 14% and astrovirus infections were 9%. Rotavirus infections were found at prevalence of 15%. The age group most affected by norovirus and astrovirus infections was 0 - 12 months, with respective prevalence rates of 73.34% and 55.56%. The most frequently observed clinical signs in children infected with astrovirus were fever (77.78%), diarrhea (55.56%), and vomiting (44.44%). The introduction of rotavirus vaccines has reduced rotavirus-related infections. However, this has not significantly impacted the prevalence of norovirus and astrovirus infections in Burkina Faso.
文摘Introduction: As new vaccines become available, countries must assess the relevance to introduce them into their vaccination schedules. Malawi has recently introduced several new vaccines and plans to introduce more. This study was conducted to identify key factors that need to be considered when deciding to introduce a new vaccine and current challenges faced by low and middle income countries using Malawi as an example. Methodology: The study employed a desk review approach, examining published literature from various sources such as PubMed, Medline, and Google Scholar. Policy documents from organizations like the World Health Organization, GAVI the Alliance, and the Ministry of Health for Malawi were also included. A total of 99 articles and documents on new vaccine introduction, challenges of immunization, policy documents in immunization and health systems strengthening were included. The review focused on addressing five key areas critical to new vaccine introduction namely: the need for a vaccine, availability of the vaccine, safety and effectiveness of the vaccine, demand for the vaccine, and the prudent use of public or private funds. Results: Malawi considered the burden of cervical cancer and the significance of malaria in the country when introducing the HPV and malaria vaccines. The country opted for vaccines that can be handled by the cold chain capacity and available human resources. Despite that malaria vaccine and Typhoid Conjugate Vaccine trials were done in country, there are limited vaccine safety and efficacy trials conducted in Malawi, leading to a reliance on WHO-prequalified vaccines. Demand for newly introduced vaccines varied, with high demand for Oral Cholera Vaccine during a cholera outbreak, while demand for COVID-19 vaccines decreased over time. Although cost-effectiveness studies were limited in the country, 2 studies indicated that Typhoid Conjugate Vaccine and malaria vaccine would be cost effective. All these have been implemented despite having challenges like lack of accurate surveillance data, inadequate cold chain capacity, limited safety and efficacy vaccine clinical trials, political influence, and limited funding. Conclusion: Despite several challenges Malawi set a good example of the careful considerations required before introducing a new vaccine. The process involves data review, priority setting, precise planning, and consultation with stakeholders. Low-income countries should invest in vaccine safety, efficacy, and cost-effectiveness trials.
文摘COVID-19, a contagious respiratory disease, presents immediate and unforeseen challenges to people worldwide. Moreover, its transmission rapidly extends globally due to its viral transmissibility, emergence of novel strains (variants), absence of immunity, and human unawareness. This framework introduces a revised epidemic model, drawing upon mathematical principles. This model incorporates a modified vaccination and lockdown approach to comprehensively depict an epidemics transmission, containment, and decision-making processes within a community. This study aims to provide policymakers with precise information on real-world situations to assist them in making informed decisions about the implementation of lockdown strategies, maintenance variables, and vaccine availability. The suggested model has conducted stability analysis, strength number analysis, and first and second-order derivative analysis of the Lyapunov function and has established the existence and uniqueness of solutions of the proposed models. We examine the combined effects of an effective vaccination campaign and non-pharmaceutical measures such as lockdowns and states of emergency. We rely on the results of this research to assist policymakers in various countries in eradicating the illness by developing more innovative measures to control the outbreak.
基金supported by the National Key Research and Development Program of China (2022YFD1800604)the China Agricultural Research System (CARS-41)the Heilongjiang Touyan Innovation Team Program of China
文摘Avian metapneumovirus(aMPV) is a highly contagious pathogen that causes acute upper respiratory tract diseases in chickens and turkeys, resulting in serious economic losses. Subtype B aMPV has recently become the dominant epidemic strain in China. We developed an attenuated aMPV subtype B strain by serial passaging in Vero cells and evaluated its safety and efficacy as a vaccine candidate. The safety test showed that after the 30th passage, the LN16-A strain was fully attenuated, as clinical signs of infection and histological lesions were absent after inoculation.The LN16-A strain did not revert to a virulent strain after five serial passages in chickens. The genomic sequence of LN16-A differed from that of the parent wild-type LN16(wtLN16) strain and had nine amino acid mutations. In chickens, a single immunization with LN16-A induced robust humoral and cellular immune responses, including the abundant production of neutralizing antibodies, CD4^(+) T lymphocytes, and the Th1(IFN-γ) and Th2(IL-4 and IL-6)cytokines. We also confirmed that LN16-A provided 100% protection against subtype B aMPV and significantly reduced viral shedding and turbinate inflammation. Our findings suggest that the LN16-A strain is a promising live attenuated vaccine candidate that can prevent infection with subtype B aMPV.