The traditional vaccines against hepatitis have been instrumental in reducing the incidence of some types of viral hepatitis;however,the need for cost-effective,easily distributable,and needle-free vaccine alternative...The traditional vaccines against hepatitis have been instrumental in reducing the incidence of some types of viral hepatitis;however,the need for cost-effective,easily distributable,and needle-free vaccine alternatives has led to the exploration of plant-based vaccines.Plant-based techniques offer a promising avenue for producing viral hepatitis vaccines due to their low-cost cultivation,scalability,and the potential for oral administration.This review highlights the successful expression of hepatitis B surface antigens in plants and the subsequent formation of virus-like particles,which have shown immunogenicity in preclinical and clinical trials.The challenges such as achieving sufficient antigen expression levels,ensuring consistent dosing,and navigating regulatory frameworks,are addressed.The review considers the potential of plant-based vaccines to meet the demands of rapid vaccine deployment in response to outbreaks and their role in global immunization strategies,particularly in resource-limited settings.This review underscores the significant strides made in plant molecular farming and the potential of plant-based vaccines to complement existing immunization methods against viral hepatitis.展开更多
Zika virus(ZIKV)is the causative agent of a viral infection that causes neurological complications in newborns and adults worldwide.Its wide transmission route and alarming spread rates are of great concern to the sci...Zika virus(ZIKV)is the causative agent of a viral infection that causes neurological complications in newborns and adults worldwide.Its wide transmission route and alarming spread rates are of great concern to the scientific community.Numerous trials have been conducted to develop treatment options for ZIKV infection.This review highlights the latest developments in the fields of vaccinology and pharmaceuticals developments for ZIKV infection.A systematic and comprehensive approach was used to gather relevant and up-to-date data so that inferences could be made about the gaps in therapeutic development.The results indicate that several therapeutic interventions are being tested against ZIKV infection,such as DNA vaccines,subunit vaccines,live-attenuated vaccines,virus-vector-based vaccines,inactivated vaccines,virus-like particles,and mRNA-based vaccines.In addition,approved anti-ZIKV drugs that can reduce the global burden are discussed.Although many vaccine candidates for ZIKV are at different stages of development,none of them have received Food and Drug Authority approval for use up to now.The issue of side effects associated with these drugs in vulnerable newborns and pregnant women is a major obstacle in the therapeutic pathway.展开更多
This review aims to summarize the currently viable vaccine strategies including the approved vaccines and the those in trials for next-generation malaria vaccines.Data on malaria vaccine development was collected thro...This review aims to summarize the currently viable vaccine strategies including the approved vaccines and the those in trials for next-generation malaria vaccines.Data on malaria vaccine development was collected through a comprehensive review.The literature search was performed using databases including Google Scholar,PubMed,NIH,and Web of Science.Various novel approaches of vaccination are being developed,including those based on radiation-attenuated strategies,monoclonal antibodies,targeted immunogenic peptides,RNA and DNA vaccines,nanoparticle-based vaccines,protein-based vaccination protocols,and whole organism-based vaccination strategies.Trials on RTS,S have entered phase Ⅲtesting,and those based on blood-stage vaccines and vaccines to interrupt malarial transmission have advanced to higher stages of trials.Mathematical modeling,combined drug and vaccine strategies,mass drug administration,polyvalent vaccine formulations,and targeted vaccination campaigns is playing an important role in malarial prevention.Furthermore,assessing coverage,accessibility,acceptability,deployment,compilation,and adherence to specific vaccination strategies in endemic regions is essential for vaccination drives against malaria.展开更多
Rotaviruses, noroviruses, and astroviruses are responsible for gastroenteritis in children under 5 years old. The objective of our study was to estimate the evolution of prevalence of rotavirus, norovirus and astrovir...Rotaviruses, noroviruses, and astroviruses are responsible for gastroenteritis in children under 5 years old. The objective of our study was to estimate the evolution of prevalence of rotavirus, norovirus and astrovirus infections in children aged 0 to 5 years with gastroenteritis, after the introduction of rotavirus vaccines in Burkina Faso. This cross-sectional study was conducted between January and December 2023, collecting 100 stool samples from children with gastroenteritis at Saint Camille Hospital in Ouagadougou and the Charles De Gaulle University Paediatric Hospital. Noroviruses and astroviruses were detected using multiplex real-time PCR with a Sacace biotechnology detection kit. Data analysis was performed with Stata statistical software, version 16.0. The prevalence of norovirus infections was 14% and astrovirus infections were 9%. Rotavirus infections were found at prevalence of 15%. The age group most affected by norovirus and astrovirus infections was 0 - 12 months, with respective prevalence rates of 73.34% and 55.56%. The most frequently observed clinical signs in children infected with astrovirus were fever (77.78%), diarrhea (55.56%), and vomiting (44.44%). The introduction of rotavirus vaccines has reduced rotavirus-related infections. However, this has not significantly impacted the prevalence of norovirus and astrovirus infections in Burkina Faso.展开更多
The advent of RNA therapy,particularly through the development of mRNA cancer vaccines,has ushered in a new era in the field of oncology.This article provides a concise overview of the key principles,recent advancemen...The advent of RNA therapy,particularly through the development of mRNA cancer vaccines,has ushered in a new era in the field of oncology.This article provides a concise overview of the key principles,recent advancements,and potential implications of mRNA cancer vaccines as a groundbreaking modality in cancer treatment.mRNA cancer vaccines represent a revolutionary approach to combatting cancer by leveraging the body’s innate immune system.These vaccines are designed to deliver specific mRNA sequences encoding cancer-associated antigens,prompting the immune system to recognize and mount a targeted response against malignant cells.This personalized and adaptive nature of mRNA vaccines holds immense potential for addressing the heterogeneity of cancer and tailoring treatments to individual patients.Recent breakthroughs in the development of mRNA vaccines,exemplified by the success of COVID-19 vaccines,have accelerated their application in oncology.The mRNA platform’s versatility allows for the rapid adaptation of vaccine candidates to various cancer types,presenting an agile and promising avenue for therapeutic intervention.Clinical trials of mRNA cancer vaccines have demonstrated encouraging results in terms of safety,immunogenicity,and efficacy.Pioneering candidates,such as BioNTech’s BNT111 and Moderna’s mRNA-4157,have exhibited promising outcomes in targeting melanoma and solid tumors,respectively.These successes underscore the potential of mRNA vaccines to elicit robust and durable anti-cancer immune responses.While the field holds great promise,challenges such as manufacturing complexities and cost considerations need to be addressed for widespread adoption.The development of scalable and cost-effective manufacturing processes,along with ongoing clinical research,will be pivotal in realizing the full potential of mRNA cancer vaccines.Overall,mRNA cancer vaccines represent a cutting-edge therapeutic approach that holds the promise of transforming cancer treatment.As research progresses,addressing challenges and refining manufacturing processes will be crucial in advancing these vaccines from clinical trials to mainstream oncology practice,offering new hope for patients in the fight against cancer.展开更多
Immunotherapy represents a promising strategy for cancer treatment that utilizes immune cells or drugs to activate the patient's own immune system and eliminate cancer cells.One of the most exciting advances withi...Immunotherapy represents a promising strategy for cancer treatment that utilizes immune cells or drugs to activate the patient's own immune system and eliminate cancer cells.One of the most exciting advances within this field is the targeting of neoantigens,which are peptides derived from non-synonymous somatic mutations that are found exclusively within cancer cells and absent in normal cells.Although neoantigen-based therapeutic vaccines have not received approval for standard cancer treatment,early clinical trials have yielded encouraging outcomes as standalone monotherapy or when combined with checkpoint inhibitors.Progress made in high-throughput sequencing and bioinformatics have greatly facilitated the precise and efficient identification of neoantigens.Consequently,personalized neoantigen-based vaccines tailored to each patient have been developed that are capable of eliciting a robust and long-lasting immune response which effectively eliminates tumors and prevents recurrences.This review provides a concise overview consolidating the latest clinical advances in neoantigen-based therapeutic vaccines,and also discusses challenges and future perspectives for this innovative approach,particularly emphasizing the potential of neoantigen-based therapeutic vaccines to enhance clinical efficacy against advanced solid tumors.展开更多
Immunotherapy is a promising approach for preventing postoperative tumor recurrence and metastasis. However, inflammatory neutrophils, recruited to the postoperative tumor site, have been shown to exacerbate tumor reg...Immunotherapy is a promising approach for preventing postoperative tumor recurrence and metastasis. However, inflammatory neutrophils, recruited to the postoperative tumor site, have been shown to exacerbate tumor regeneration and limit the efficacy of cancer vaccines. Consequently, addressing postoperative immunosuppression caused by neutrophils is crucial for improving treatment outcomes. This study presents a combined chemoimmunotherapeutic strategy that employs a biocompatible macroporous scaffold-based cancer vaccine (S-CV) and a sialic acid (SA)-modified, doxorubicin (DOX)-loaded liposomal platform (DOX@SAL). The S-CV contains whole tumor lysates as antigens and imiquimod (R837, Toll-like receptor 7 activator)-loaded PLGA nanoparticles as immune adjuvants for cancer, which enhance dendritic cell activation and cytotoxic T cell proliferation upon localized implantation. When administered intravenously, DOX@SAL specifically targets and delivers drugs to activated neutrophils in vivo, mitigating neutrophil infiltration and suppressing postoperative inflammatory responses. In vivo and vitro experiments have demonstrated that S-CV plus DOX@SAL, a combined chemo-immunotherapeutic strategy, has a remarkable potential to inhibit postoperative local tumor recurrence and distant tumor progression, with minimal systemic toxicity, providing a new concept for postoperative treatment of tumors.展开更多
Nanoparticles are significant for veterinary vaccine development because they are safer and more effective than conventional formulations.One promising area of research involves self-assembled protein nanoparticles(SA...Nanoparticles are significant for veterinary vaccine development because they are safer and more effective than conventional formulations.One promising area of research involves self-assembled protein nanoparticles(SAPNs),which have shown potential for enhancing antigen-presenting cell uptake,B-cell activation,and lymph node trafficking.Numerous nanovaccines have been utilized in veterinary medicine,including natural self-assembled protein nanoparticles,rationally designed self-assembled protein nanoparticles,animal virus-derived nanoparticles,bacteriophagederived nanoparticles,and plant-derived nanoparticles,which will be discussed in this review.SAPN vaccines can produce robust cellular and humoral immune responses and have been shown to protect against various animal infectious diseases.This article attempts to summarize these diverse nanovaccine types and their recent research progress in the field of veterinary medicine.Furthermore,this paper highlights their disadvantages and methods for improving their immunogenicity.展开更多
This study undertakes a thorough analysis of the sentiment within the r/Corona-virus subreddit community regarding COVID-19 vaccines on Reddit. We meticulously collected and processed 34,768 comments, spanning from No...This study undertakes a thorough analysis of the sentiment within the r/Corona-virus subreddit community regarding COVID-19 vaccines on Reddit. We meticulously collected and processed 34,768 comments, spanning from November 20, 2020, to January 17, 2021, using sentiment calculation methods such as TextBlob and Twitter-RoBERTa-Base-sentiment to categorize comments into positive, negative, or neutral sentiments. The methodology involved the use of Count Vectorizer as a vectorization technique and the implementation of advanced ensemble algorithms like XGBoost and Random Forest, achieving an accuracy of approximately 80%. Furthermore, through the Dirichlet latent allocation, we identified 23 distinct reasons for vaccine distrust among negative comments. These findings are crucial for understanding the community’s attitudes towards vaccination and can guide targeted public health messaging. Our study not only provides insights into public opinion during a critical health crisis, but also demonstrates the effectiveness of combining natural language processing tools and ensemble algorithms in sentiment analysis.展开更多
Objective To provide suggestions and a reference for improving the quality management system of clinical trials of therapeutic vaccines and promoting the development of therapeutic vaccines in China.Methods Literature...Objective To provide suggestions and a reference for improving the quality management system of clinical trials of therapeutic vaccines and promoting the development of therapeutic vaccines in China.Methods Literature research,case study and comparative study were used to analyze the quality management system of clinical trials of therapeutic vaccines.Results and Conclusion From the perspective of the sponsor,investigators and the thirdparty technical service company,the problems such as the low efficiency of clinical trial sample preparation and the lax implementation of the protocol by hospital departments in the quality management of clinical trials of therapeutic vaccines in China were found.Then,the optimization plan for the quality management of clinical trials of therapeutic vaccines is proposed,including optimizing the preparation process of therapeutic vaccines and strengthening the training of hospital department personnel.展开更多
Although the coronavirus disease 2019(COVID-19)pandemic was declared to be no longer“a public health emergency of international concern”with its wide range of clinical manifestations and late complications,severe ac...Although the coronavirus disease 2019(COVID-19)pandemic was declared to be no longer“a public health emergency of international concern”with its wide range of clinical manifestations and late complications,severe acute respiratory syndrome coronavirus 2 infection proved to be a serious threat,especially to the elderly and patients with comorbidities.Patients with oncologic diseases are vulnerable to severe infection and death.Indeed,patients with oncohematological diseases have a higher risk of severe COVID-19 and impaired post-vaccination immunity.Unfortunately,cancer patients are usually excluded from vaccine trials and investigations of post-vaccinal immune responses and the effectiveness of the vaccines.We aimed to elucidate to what extent patients with cancer are at increased risk of developing severe COVID-19 and what is their overall case fatality rate.We also present the current concept and evidence on the effectiveness and safety of COVID-19 vaccines,including boosters,in oncology patients.In conclusion,despite the considerably higher mortality in the cancer patient group than the general population,countries with high vaccination rates have demonstrated trends toward improved survival of cancer patients early and late in the pandemic.展开更多
Background: HPV vaccines were introduced globally as one of the most effective strategies to prevent cervical cancer. HPV vaccines were rolled out in Kenya in 2019 targeting girls aged 10 - 14 years, but the uptake ha...Background: HPV vaccines were introduced globally as one of the most effective strategies to prevent cervical cancer. HPV vaccines were rolled out in Kenya in 2019 targeting girls aged 10 - 14 years, but the uptake has not been satisfactory. The Purpose of the Study: The aim of the study was to assess the level of HPV uptake among girls aged 10 - 14 years in Rongai and Nakuru West Sub-Counties in Nakuru County. Method: This was a cross-sectional study where data on HPV uptake was retrieved from all the public health facilities located in Rongai and Nakuru West Sub-Counties, Nakuru County, entered into Microsoft Excel then transferred to SPSS version 26 for analysis of HPV vaccine uptake since the year 2019 to June 2022. Data Analysis: Descriptive statistics were used where tables and graphs were generated to represent the percentages and trends of HPV vaccine uptake. Results: The average percentage of HPV uptake in Nakuru West Sub-County since the rollout of vaccination was 17% while that of Rongai Sub-County was 15%. In 2019, HPV 1 uptake was generally low for both Sub-Counties, the results show no HPV 2 vaccines were administered during that year. In 2020, Nakuru West reported an increase in HPV 1 uptake, while Rongai reported a drop in HPV 1 uptake. Both Sub-Counties reported an increase in HPV 2 in 2020 as compared to the previous year. The highest HPV 1 & 2 uptakes were reported in 2021 in both Sub-Counties. The uptake of both HPV 1 & 2 kept increasing subsequently. Conclusion: The overall uptake of HPV vaccines for Doses 1 and 2, in both Rongai and Nakuru West Sub-Counties, is low. However, there has been a consistent increase in uptake of the two doses in the two Sub-Counties since 2019. Therefore, raising public awareness of the importance of HPV vaccination could improve uptake.展开更多
DNA vaccines are the third generation vaccines based on purified plasmid preparations containing transgenes that encode antigenic/therapeutic proteins or peptides capable of triggering an immune response against a wid...DNA vaccines are the third generation vaccines based on purified plasmid preparations containing transgenes that encode antigenic/therapeutic proteins or peptides capable of triggering an immune response against a wide range of diseases. This vaccine platform presents several attributes that confer distinct advantages over other vaccine technologies in terms of safety, ease of fabrication and stability. Many aspects, such as antigen expression and especially vector design, are under study because of their great influence on immunogenicity and efficacy of DNA vaccines. In this regard, with the attempt of improving the efficiency of DNA vaccines, co-expression of stimulatory sequences and diverse vector delivery systems are being optimized. With this in mind, this review aims to giving a conceptual approach of DNA vaccines, explaining their mechanisms of action and listing the already licensed veterinary DNA vaccines presented in the market.展开更多
Malignant tumors are still a worldwide threat to human health.Tumor treatment strategies are constantly evolving,and the advent of tumor immunotherapy has brought up hope to many types of tumors,especially for those t...Malignant tumors are still a worldwide threat to human health.Tumor treatment strategies are constantly evolving,and the advent of tumor immunotherapy has brought up hope to many types of tumors,especially for those that are refractory to conventional therapies including surgery,radiotherapy,and chemotherapy.Tumor vaccines can initiate or amplify an anti-tumor immune response in tumor patients through active immunization,and therefore occupy an important position in tumor immunotherapy.The main types of tumor vaccines include tumor cell vaccines,dendritic cell vaccines,polypeptide vaccines and nucleic acid vaccines.Due to factors such as poor antigen selection and suppressive tumor microenvironment,earliest tumor vaccines on clinical trials failed to achieve satisfactory clinical effects.However,with the development of second-generation genome sequencing technologies and bioinformatics tools,it is possible to predict neoantigens generated by tumor-specific mutations and therefore prepare personalized vaccines.This article summarizes the global efforts in developing tumor vaccines and highlights several representative tumor vaccines in each category.展开更多
Objective:To compare the reporting pattern of hearing loss and tinnitus across different vaccines brands used in Malaysia(BNT162b2,CoronaVac,ChAdOx1,Ad5.CoV2-S and BBIBP-CorV).Methods:This retrospective study included...Objective:To compare the reporting pattern of hearing loss and tinnitus across different vaccines brands used in Malaysia(BNT162b2,CoronaVac,ChAdOx1,Ad5.CoV2-S and BBIBP-CorV).Methods:This retrospective study included all reports of hearing loss and tinnitus occurring after COVID-19 vaccination that were received in the national pharmacovigilance database,QUEST,from February 24,2021 through July 31,2022.Reports given causality consistent or indeterminate were included.Results:There were 21 cases of hearing loss,with overall reporting rate of 0.29 cases per million doses.The rate was similar across BNT162b2,CoronaVac and ChAdOx1.For tinnitus,35 cases were reported,with the overall reporting rate of 0.49 cases per million doses,and the highest rate was reported for ChAdOx1.For both events,most cases aged 30 to 49 years.No gender disparity was observed.Both events were mainly reported to have occurred after the primary doses,with a median time-to-onset of two days.There were no statistically significant differences in the reporting patterns for both events across BNT162b2,CoronaVac and ChAdOx1 by age group,gender,race,and dose number.Conclusions:Despite the low reporting rates and insufficient evidence to confirm its relationship,hearing loss and tinnitus following vaccinations should not be ignored due to its disabling potential and impact on one’s quality of life.Continual reporting is encouraged for better signal characterization in the future.展开更多
Vaccine is a principal and highly cost-effective medical method on controlling infectious diseases and improving population health.Various vaccines are eagerly needed in the low-income countries along the Belt&Roa...Vaccine is a principal and highly cost-effective medical method on controlling infectious diseases and improving population health.Various vaccines are eagerly needed in the low-income countries along the Belt&Road.With the good quality to reach WHO prequalification standard,and the abundant capacity to fulfill the demand from market abroad,upon the platform of China-proposed"the Belt&Road Initiative",the vaccines manufactured in China are exporting to countries worldwide.The independent innovative vaccines'R&D system,which fruited a series of innovative infectious diseases vaccines(EV71 vaccine,sIPV,HEV,Ebola vaccine,etc.)to be launched in Chinese market,indicates that China has developed rapidly from"a great vaccine-production country"to"a powerful vaccine-innovation country".The implementation of National Innovation-driven Development Strategy would further push forward the developm ent and internationalization process of Chinese innovative vaccines.Therefore,the China-invented vaccines will make an important role in the prevention and control of infectious disease in various countries and become one of the most powerful weapons in fighting the global epidemic event in the future.展开更多
Combinations of DNA and recombinant-viral-vector based vaccines are promising AIDS vaccine methods because of their potential for inducing cellular immune responses. It was found that Gag-specific cytotoxic lymphocyte...Combinations of DNA and recombinant-viral-vector based vaccines are promising AIDS vaccine methods because of their potential for inducing cellular immune responses. It was found that Gag-specific cytotoxic lymphocyte (CTL) responses were associated with lowering viremia in an untreated HIV-1 infected cohort. The main objectives of our studies were the construction of DNA and recombinant Sendai virus vector (rSeV) vaccines containing a gag gene from the prevalent Thailand subtype B strain in China and trying to use these vaccines for therapeutic and prophylactic vaccines. The candidate plasmid DNA vaccine pcDNA3.1(+)-gag and recombinant Sendai virus vaccine (rSeV-gag) were constructed separately. It was verified by Western blotting analysis that both DNA and rSeV-gag vaccines expressed the HIV-1 Gag protein correctly and efficiently. Balb/c mice were immunized with these two vaccines in different administration schemes. HIV-1 Gag-specific CTL responses and antibody levels were detected by intracellular cytokine staining assay and enzyme-linked immunosorbant assay (ELISA) respectively. Combined vaccines in a DNA prime/rSeV-gag boost vaccination regimen induced the strongest and most long-lasting Gag-specific CTL and antibody responses. It maintained relatively high levels even 9 weeks post immunization. This data indicated that the prime-boost regimen with DNA and rSeV-gag vaccines may offer promising HIV vaccine regimens.展开更多
SARS-COV-2 coronavirus causes COVID-19,which is a respiratory disease.COVID-19,the common cold,seasonal allergies,and the flu have many similar symptoms.COVID-19 is caused by SARS-CoV-2,while rhinoviruses most often c...SARS-COV-2 coronavirus causes COVID-19,which is a respiratory disease.COVID-19,the common cold,seasonal allergies,and the flu have many similar symptoms.COVID-19 is caused by SARS-CoV-2,while rhinoviruses most often cause the common cold.The World Health Organization issued notifications on December 30,2019,and January 30,2020,classifying this viral disease as a Public Health Emergency of International Concern.SARS-CoV-2 was detected in humans and animals in 2019.Several investigations are underway to cure COVID-19 and develop a vaccine to prevent infection with SARS-CoV-2.Several COVID-19 vaccines have now been approved or licensed for human use(SII/Covishield,AstraZeneca/AZD1222,Janssen/Ad26.COV 2.S,Sinopharm,Moderna,Sinovac-CoronaVac,Covaxin).Four issues arise in the research and manufacture of the COVID-19 vaccine:production,affordability,allocation and deployment.The adenovirus-vectored and mRNA-based vaccines for COVID-19 showed the highest efficacy after the first and second doses,respectively.The mRNA-based vaccines had higher side effects.Remarkably few experienced extreme adverse effects and all stimulated robust immune responses.展开更多
AIM:To investigate the protective efficacy of H2 strain attenuated live hepatitis A vaccines (H2-strain vaccines) in hepatitis A (HA) outbreaks.METHODS:With the permission of their parents, 5551 pre-school and grade 1...AIM:To investigate the protective efficacy of H2 strain attenuated live hepatitis A vaccines (H2-strain vaccines) in hepatitis A (HA) outbreaks.METHODS:With the permission of their parents, 5551 pre-school and grade 1-3 primary school children were inoculated with 1 dose (10(6.5) TCID(50)) of H2 strain vaccines in a nonrandomized, controlled trial conducted in Fucheng County, Hebei Province in May 1997.Another 6485 children in the same grades and compatible in gender and age were enrolled as controls. Epidemiological and serological survey was conducted to evaluate the protective efficacy of the vaccines. ELISA was used to detect serum IgM anti-HAV.RESULTS:HA outbreak started in early May 1998, peaked in the middle of the same month, and lasted about 80 days. Overall 302 HA cases were found, 192(63.58%) were 5-9 years old. One vaccinee and 25 control cases were found to have hepatitis A, which account for 0.28% (1/356) and 5.92% (25/422) of all vaccinees and controls in the 14 villages, respectively. The protective efficacy of vaccines was 95.27% (95% CI: 85.83%-104.72%). In subjects tested for anti-HAV IgM from 13 villages, 1(0.40%) overt and 11(4.06%) asymptomatic HAV cases were found in 271 vaccinees but 21(6.69%) of overt and asymptomatic ones were found in 314 controls.CONCLUSION:H2 strain vaccines were excellent in preventing overt hepatitis A,but not so effective in preventing asymptomatic hepatitis A virus infection.A booster dose might be needed to get permanent reliable immunity.展开更多
Chemokines are cytokines that can promote the activation and migration of immune cells,and increase the recognition of antigen by antigen-presenting cells(APC).Previous studies showed that a DNA vaccine can induce hum...Chemokines are cytokines that can promote the activation and migration of immune cells,and increase the recognition of antigen by antigen-presenting cells(APC).Previous studies showed that a DNA vaccine can induce humoral and cellular immune responses of flounder after immunization.To explore the improvement of chemokines on the efficiency of OmpK vaccine,two bicistronic DNA candidate vaccines were constructed and the immune responses they induced in the flounder were investigated by reverse transcription polymerase chain reaction(RT-PCR),indirect immunofl uorescent assay(IFA),H&E staining,fl ow cytometry(FCM),and quantifi cational real-time polymerase chain reaction(qRT-PCR).pBudCE4.1 plasmid as an expression vector,bicistronic DNA vaccines encoding OmpK gene and CC-motif ligand 4 gene(p-OmpK-CCL4),or Ompk gene and CC-motif ligand 19 gene(p-OmpK-CCL19)were successfully constructed.The results showed that two bicistronic DNA vaccines expressed Ompk protein of Vibrio anguillarum and CCL4/CCL19 proteins of fl ounder both in vitro and in vivo.After immunization,a large number of leucocytes in muscle were recruited at the injection site in treatment groups.The constructed vaccines induced signifi cant increases in CD4-1^(+) and CD4-2^(+) T lymphocytes,and sIgM^(+) B lymphocytes in peripheral blood,spleen,and head kidney.The percentage of T lymphocytes peaked on the 14^(th) post-vaccination day whereas that of B lymphocytes peaked in the 6^(th) post-vaccination week.Moreover,the expression profi les of 10 immune-related genes increased in muscles around the injection site,spleen,and head kidney.After the challenge,p-OmpK-CCL4 and p-OmpK-CCL19 conferred a relative percentage survival(RPS)of 74.1%and 63.3%,respectively,higher than p-OmpK alone(40.8%).In conclusion,both CCL4 and CCL19 can improve the protection of p-OmpK via evoking local immune response and then humoral and cellular immunity.CCL4 and CCL19 will be potential molecular adjuvants for use in DNA vaccines.展开更多
文摘The traditional vaccines against hepatitis have been instrumental in reducing the incidence of some types of viral hepatitis;however,the need for cost-effective,easily distributable,and needle-free vaccine alternatives has led to the exploration of plant-based vaccines.Plant-based techniques offer a promising avenue for producing viral hepatitis vaccines due to their low-cost cultivation,scalability,and the potential for oral administration.This review highlights the successful expression of hepatitis B surface antigens in plants and the subsequent formation of virus-like particles,which have shown immunogenicity in preclinical and clinical trials.The challenges such as achieving sufficient antigen expression levels,ensuring consistent dosing,and navigating regulatory frameworks,are addressed.The review considers the potential of plant-based vaccines to meet the demands of rapid vaccine deployment in response to outbreaks and their role in global immunization strategies,particularly in resource-limited settings.This review underscores the significant strides made in plant molecular farming and the potential of plant-based vaccines to complement existing immunization methods against viral hepatitis.
基金This work is supported by the United Arab Emirates University UPAR(Grant No.G3458).
文摘Zika virus(ZIKV)is the causative agent of a viral infection that causes neurological complications in newborns and adults worldwide.Its wide transmission route and alarming spread rates are of great concern to the scientific community.Numerous trials have been conducted to develop treatment options for ZIKV infection.This review highlights the latest developments in the fields of vaccinology and pharmaceuticals developments for ZIKV infection.A systematic and comprehensive approach was used to gather relevant and up-to-date data so that inferences could be made about the gaps in therapeutic development.The results indicate that several therapeutic interventions are being tested against ZIKV infection,such as DNA vaccines,subunit vaccines,live-attenuated vaccines,virus-vector-based vaccines,inactivated vaccines,virus-like particles,and mRNA-based vaccines.In addition,approved anti-ZIKV drugs that can reduce the global burden are discussed.Although many vaccine candidates for ZIKV are at different stages of development,none of them have received Food and Drug Authority approval for use up to now.The issue of side effects associated with these drugs in vulnerable newborns and pregnant women is a major obstacle in the therapeutic pathway.
文摘This review aims to summarize the currently viable vaccine strategies including the approved vaccines and the those in trials for next-generation malaria vaccines.Data on malaria vaccine development was collected through a comprehensive review.The literature search was performed using databases including Google Scholar,PubMed,NIH,and Web of Science.Various novel approaches of vaccination are being developed,including those based on radiation-attenuated strategies,monoclonal antibodies,targeted immunogenic peptides,RNA and DNA vaccines,nanoparticle-based vaccines,protein-based vaccination protocols,and whole organism-based vaccination strategies.Trials on RTS,S have entered phase Ⅲtesting,and those based on blood-stage vaccines and vaccines to interrupt malarial transmission have advanced to higher stages of trials.Mathematical modeling,combined drug and vaccine strategies,mass drug administration,polyvalent vaccine formulations,and targeted vaccination campaigns is playing an important role in malarial prevention.Furthermore,assessing coverage,accessibility,acceptability,deployment,compilation,and adherence to specific vaccination strategies in endemic regions is essential for vaccination drives against malaria.
文摘Rotaviruses, noroviruses, and astroviruses are responsible for gastroenteritis in children under 5 years old. The objective of our study was to estimate the evolution of prevalence of rotavirus, norovirus and astrovirus infections in children aged 0 to 5 years with gastroenteritis, after the introduction of rotavirus vaccines in Burkina Faso. This cross-sectional study was conducted between January and December 2023, collecting 100 stool samples from children with gastroenteritis at Saint Camille Hospital in Ouagadougou and the Charles De Gaulle University Paediatric Hospital. Noroviruses and astroviruses were detected using multiplex real-time PCR with a Sacace biotechnology detection kit. Data analysis was performed with Stata statistical software, version 16.0. The prevalence of norovirus infections was 14% and astrovirus infections were 9%. Rotavirus infections were found at prevalence of 15%. The age group most affected by norovirus and astrovirus infections was 0 - 12 months, with respective prevalence rates of 73.34% and 55.56%. The most frequently observed clinical signs in children infected with astrovirus were fever (77.78%), diarrhea (55.56%), and vomiting (44.44%). The introduction of rotavirus vaccines has reduced rotavirus-related infections. However, this has not significantly impacted the prevalence of norovirus and astrovirus infections in Burkina Faso.
文摘The advent of RNA therapy,particularly through the development of mRNA cancer vaccines,has ushered in a new era in the field of oncology.This article provides a concise overview of the key principles,recent advancements,and potential implications of mRNA cancer vaccines as a groundbreaking modality in cancer treatment.mRNA cancer vaccines represent a revolutionary approach to combatting cancer by leveraging the body’s innate immune system.These vaccines are designed to deliver specific mRNA sequences encoding cancer-associated antigens,prompting the immune system to recognize and mount a targeted response against malignant cells.This personalized and adaptive nature of mRNA vaccines holds immense potential for addressing the heterogeneity of cancer and tailoring treatments to individual patients.Recent breakthroughs in the development of mRNA vaccines,exemplified by the success of COVID-19 vaccines,have accelerated their application in oncology.The mRNA platform’s versatility allows for the rapid adaptation of vaccine candidates to various cancer types,presenting an agile and promising avenue for therapeutic intervention.Clinical trials of mRNA cancer vaccines have demonstrated encouraging results in terms of safety,immunogenicity,and efficacy.Pioneering candidates,such as BioNTech’s BNT111 and Moderna’s mRNA-4157,have exhibited promising outcomes in targeting melanoma and solid tumors,respectively.These successes underscore the potential of mRNA vaccines to elicit robust and durable anti-cancer immune responses.While the field holds great promise,challenges such as manufacturing complexities and cost considerations need to be addressed for widespread adoption.The development of scalable and cost-effective manufacturing processes,along with ongoing clinical research,will be pivotal in realizing the full potential of mRNA cancer vaccines.Overall,mRNA cancer vaccines represent a cutting-edge therapeutic approach that holds the promise of transforming cancer treatment.As research progresses,addressing challenges and refining manufacturing processes will be crucial in advancing these vaccines from clinical trials to mainstream oncology practice,offering new hope for patients in the fight against cancer.
基金supported by grants from the National Clinical Research Center Cancer Fundthe Haihe Laboratory of Synthetic Biology(22HHSWSS00004)。
文摘Immunotherapy represents a promising strategy for cancer treatment that utilizes immune cells or drugs to activate the patient's own immune system and eliminate cancer cells.One of the most exciting advances within this field is the targeting of neoantigens,which are peptides derived from non-synonymous somatic mutations that are found exclusively within cancer cells and absent in normal cells.Although neoantigen-based therapeutic vaccines have not received approval for standard cancer treatment,early clinical trials have yielded encouraging outcomes as standalone monotherapy or when combined with checkpoint inhibitors.Progress made in high-throughput sequencing and bioinformatics have greatly facilitated the precise and efficient identification of neoantigens.Consequently,personalized neoantigen-based vaccines tailored to each patient have been developed that are capable of eliciting a robust and long-lasting immune response which effectively eliminates tumors and prevents recurrences.This review provides a concise overview consolidating the latest clinical advances in neoantigen-based therapeutic vaccines,and also discusses challenges and future perspectives for this innovative approach,particularly emphasizing the potential of neoantigen-based therapeutic vaccines to enhance clinical efficacy against advanced solid tumors.
基金funding from the Liaoning Province Doctoral Start-up(grant number 2023-BS-086).
文摘Immunotherapy is a promising approach for preventing postoperative tumor recurrence and metastasis. However, inflammatory neutrophils, recruited to the postoperative tumor site, have been shown to exacerbate tumor regeneration and limit the efficacy of cancer vaccines. Consequently, addressing postoperative immunosuppression caused by neutrophils is crucial for improving treatment outcomes. This study presents a combined chemoimmunotherapeutic strategy that employs a biocompatible macroporous scaffold-based cancer vaccine (S-CV) and a sialic acid (SA)-modified, doxorubicin (DOX)-loaded liposomal platform (DOX@SAL). The S-CV contains whole tumor lysates as antigens and imiquimod (R837, Toll-like receptor 7 activator)-loaded PLGA nanoparticles as immune adjuvants for cancer, which enhance dendritic cell activation and cytotoxic T cell proliferation upon localized implantation. When administered intravenously, DOX@SAL specifically targets and delivers drugs to activated neutrophils in vivo, mitigating neutrophil infiltration and suppressing postoperative inflammatory responses. In vivo and vitro experiments have demonstrated that S-CV plus DOX@SAL, a combined chemo-immunotherapeutic strategy, has a remarkable potential to inhibit postoperative local tumor recurrence and distant tumor progression, with minimal systemic toxicity, providing a new concept for postoperative treatment of tumors.
文摘Nanoparticles are significant for veterinary vaccine development because they are safer and more effective than conventional formulations.One promising area of research involves self-assembled protein nanoparticles(SAPNs),which have shown potential for enhancing antigen-presenting cell uptake,B-cell activation,and lymph node trafficking.Numerous nanovaccines have been utilized in veterinary medicine,including natural self-assembled protein nanoparticles,rationally designed self-assembled protein nanoparticles,animal virus-derived nanoparticles,bacteriophagederived nanoparticles,and plant-derived nanoparticles,which will be discussed in this review.SAPN vaccines can produce robust cellular and humoral immune responses and have been shown to protect against various animal infectious diseases.This article attempts to summarize these diverse nanovaccine types and their recent research progress in the field of veterinary medicine.Furthermore,this paper highlights their disadvantages and methods for improving their immunogenicity.
文摘This study undertakes a thorough analysis of the sentiment within the r/Corona-virus subreddit community regarding COVID-19 vaccines on Reddit. We meticulously collected and processed 34,768 comments, spanning from November 20, 2020, to January 17, 2021, using sentiment calculation methods such as TextBlob and Twitter-RoBERTa-Base-sentiment to categorize comments into positive, negative, or neutral sentiments. The methodology involved the use of Count Vectorizer as a vectorization technique and the implementation of advanced ensemble algorithms like XGBoost and Random Forest, achieving an accuracy of approximately 80%. Furthermore, through the Dirichlet latent allocation, we identified 23 distinct reasons for vaccine distrust among negative comments. These findings are crucial for understanding the community’s attitudes towards vaccination and can guide targeted public health messaging. Our study not only provides insights into public opinion during a critical health crisis, but also demonstrates the effectiveness of combining natural language processing tools and ensemble algorithms in sentiment analysis.
文摘Objective To provide suggestions and a reference for improving the quality management system of clinical trials of therapeutic vaccines and promoting the development of therapeutic vaccines in China.Methods Literature research,case study and comparative study were used to analyze the quality management system of clinical trials of therapeutic vaccines.Results and Conclusion From the perspective of the sponsor,investigators and the thirdparty technical service company,the problems such as the low efficiency of clinical trial sample preparation and the lax implementation of the protocol by hospital departments in the quality management of clinical trials of therapeutic vaccines in China were found.Then,the optimization plan for the quality management of clinical trials of therapeutic vaccines is proposed,including optimizing the preparation process of therapeutic vaccines and strengthening the training of hospital department personnel.
基金Supported by the European Union-Next Generation EU,through the National Recovery and Resilience Plan of the Republic of Bulgaria,No.BG-RRP-2.004-0008.
文摘Although the coronavirus disease 2019(COVID-19)pandemic was declared to be no longer“a public health emergency of international concern”with its wide range of clinical manifestations and late complications,severe acute respiratory syndrome coronavirus 2 infection proved to be a serious threat,especially to the elderly and patients with comorbidities.Patients with oncologic diseases are vulnerable to severe infection and death.Indeed,patients with oncohematological diseases have a higher risk of severe COVID-19 and impaired post-vaccination immunity.Unfortunately,cancer patients are usually excluded from vaccine trials and investigations of post-vaccinal immune responses and the effectiveness of the vaccines.We aimed to elucidate to what extent patients with cancer are at increased risk of developing severe COVID-19 and what is their overall case fatality rate.We also present the current concept and evidence on the effectiveness and safety of COVID-19 vaccines,including boosters,in oncology patients.In conclusion,despite the considerably higher mortality in the cancer patient group than the general population,countries with high vaccination rates have demonstrated trends toward improved survival of cancer patients early and late in the pandemic.
文摘Background: HPV vaccines were introduced globally as one of the most effective strategies to prevent cervical cancer. HPV vaccines were rolled out in Kenya in 2019 targeting girls aged 10 - 14 years, but the uptake has not been satisfactory. The Purpose of the Study: The aim of the study was to assess the level of HPV uptake among girls aged 10 - 14 years in Rongai and Nakuru West Sub-Counties in Nakuru County. Method: This was a cross-sectional study where data on HPV uptake was retrieved from all the public health facilities located in Rongai and Nakuru West Sub-Counties, Nakuru County, entered into Microsoft Excel then transferred to SPSS version 26 for analysis of HPV vaccine uptake since the year 2019 to June 2022. Data Analysis: Descriptive statistics were used where tables and graphs were generated to represent the percentages and trends of HPV vaccine uptake. Results: The average percentage of HPV uptake in Nakuru West Sub-County since the rollout of vaccination was 17% while that of Rongai Sub-County was 15%. In 2019, HPV 1 uptake was generally low for both Sub-Counties, the results show no HPV 2 vaccines were administered during that year. In 2020, Nakuru West reported an increase in HPV 1 uptake, while Rongai reported a drop in HPV 1 uptake. Both Sub-Counties reported an increase in HPV 2 in 2020 as compared to the previous year. The highest HPV 1 & 2 uptakes were reported in 2021 in both Sub-Counties. The uptake of both HPV 1 & 2 kept increasing subsequently. Conclusion: The overall uptake of HPV vaccines for Doses 1 and 2, in both Rongai and Nakuru West Sub-Counties, is low. However, there has been a consistent increase in uptake of the two doses in the two Sub-Counties since 2019. Therefore, raising public awareness of the importance of HPV vaccination could improve uptake.
文摘DNA vaccines are the third generation vaccines based on purified plasmid preparations containing transgenes that encode antigenic/therapeutic proteins or peptides capable of triggering an immune response against a wide range of diseases. This vaccine platform presents several attributes that confer distinct advantages over other vaccine technologies in terms of safety, ease of fabrication and stability. Many aspects, such as antigen expression and especially vector design, are under study because of their great influence on immunogenicity and efficacy of DNA vaccines. In this regard, with the attempt of improving the efficiency of DNA vaccines, co-expression of stimulatory sequences and diverse vector delivery systems are being optimized. With this in mind, this review aims to giving a conceptual approach of DNA vaccines, explaining their mechanisms of action and listing the already licensed veterinary DNA vaccines presented in the market.
文摘Malignant tumors are still a worldwide threat to human health.Tumor treatment strategies are constantly evolving,and the advent of tumor immunotherapy has brought up hope to many types of tumors,especially for those that are refractory to conventional therapies including surgery,radiotherapy,and chemotherapy.Tumor vaccines can initiate or amplify an anti-tumor immune response in tumor patients through active immunization,and therefore occupy an important position in tumor immunotherapy.The main types of tumor vaccines include tumor cell vaccines,dendritic cell vaccines,polypeptide vaccines and nucleic acid vaccines.Due to factors such as poor antigen selection and suppressive tumor microenvironment,earliest tumor vaccines on clinical trials failed to achieve satisfactory clinical effects.However,with the development of second-generation genome sequencing technologies and bioinformatics tools,it is possible to predict neoantigens generated by tumor-specific mutations and therefore prepare personalized vaccines.This article summarizes the global efforts in developing tumor vaccines and highlights several representative tumor vaccines in each category.
文摘Objective:To compare the reporting pattern of hearing loss and tinnitus across different vaccines brands used in Malaysia(BNT162b2,CoronaVac,ChAdOx1,Ad5.CoV2-S and BBIBP-CorV).Methods:This retrospective study included all reports of hearing loss and tinnitus occurring after COVID-19 vaccination that were received in the national pharmacovigilance database,QUEST,from February 24,2021 through July 31,2022.Reports given causality consistent or indeterminate were included.Results:There were 21 cases of hearing loss,with overall reporting rate of 0.29 cases per million doses.The rate was similar across BNT162b2,CoronaVac and ChAdOx1.For tinnitus,35 cases were reported,with the overall reporting rate of 0.49 cases per million doses,and the highest rate was reported for ChAdOx1.For both events,most cases aged 30 to 49 years.No gender disparity was observed.Both events were mainly reported to have occurred after the primary doses,with a median time-to-onset of two days.There were no statistically significant differences in the reporting patterns for both events across BNT162b2,CoronaVac and ChAdOx1 by age group,gender,race,and dose number.Conclusions:Despite the low reporting rates and insufficient evidence to confirm its relationship,hearing loss and tinnitus following vaccinations should not be ignored due to its disabling potential and impact on one’s quality of life.Continual reporting is encouraged for better signal characterization in the future.
文摘Vaccine is a principal and highly cost-effective medical method on controlling infectious diseases and improving population health.Various vaccines are eagerly needed in the low-income countries along the Belt&Road.With the good quality to reach WHO prequalification standard,and the abundant capacity to fulfill the demand from market abroad,upon the platform of China-proposed"the Belt&Road Initiative",the vaccines manufactured in China are exporting to countries worldwide.The independent innovative vaccines'R&D system,which fruited a series of innovative infectious diseases vaccines(EV71 vaccine,sIPV,HEV,Ebola vaccine,etc.)to be launched in Chinese market,indicates that China has developed rapidly from"a great vaccine-production country"to"a powerful vaccine-innovation country".The implementation of National Innovation-driven Development Strategy would further push forward the developm ent and internationalization process of Chinese innovative vaccines.Therefore,the China-invented vaccines will make an important role in the prevention and control of infectious disease in various countries and become one of the most powerful weapons in fighting the global epidemic event in the future.
文摘Combinations of DNA and recombinant-viral-vector based vaccines are promising AIDS vaccine methods because of their potential for inducing cellular immune responses. It was found that Gag-specific cytotoxic lymphocyte (CTL) responses were associated with lowering viremia in an untreated HIV-1 infected cohort. The main objectives of our studies were the construction of DNA and recombinant Sendai virus vector (rSeV) vaccines containing a gag gene from the prevalent Thailand subtype B strain in China and trying to use these vaccines for therapeutic and prophylactic vaccines. The candidate plasmid DNA vaccine pcDNA3.1(+)-gag and recombinant Sendai virus vaccine (rSeV-gag) were constructed separately. It was verified by Western blotting analysis that both DNA and rSeV-gag vaccines expressed the HIV-1 Gag protein correctly and efficiently. Balb/c mice were immunized with these two vaccines in different administration schemes. HIV-1 Gag-specific CTL responses and antibody levels were detected by intracellular cytokine staining assay and enzyme-linked immunosorbant assay (ELISA) respectively. Combined vaccines in a DNA prime/rSeV-gag boost vaccination regimen induced the strongest and most long-lasting Gag-specific CTL and antibody responses. It maintained relatively high levels even 9 weeks post immunization. This data indicated that the prime-boost regimen with DNA and rSeV-gag vaccines may offer promising HIV vaccine regimens.
文摘SARS-COV-2 coronavirus causes COVID-19,which is a respiratory disease.COVID-19,the common cold,seasonal allergies,and the flu have many similar symptoms.COVID-19 is caused by SARS-CoV-2,while rhinoviruses most often cause the common cold.The World Health Organization issued notifications on December 30,2019,and January 30,2020,classifying this viral disease as a Public Health Emergency of International Concern.SARS-CoV-2 was detected in humans and animals in 2019.Several investigations are underway to cure COVID-19 and develop a vaccine to prevent infection with SARS-CoV-2.Several COVID-19 vaccines have now been approved or licensed for human use(SII/Covishield,AstraZeneca/AZD1222,Janssen/Ad26.COV 2.S,Sinopharm,Moderna,Sinovac-CoronaVac,Covaxin).Four issues arise in the research and manufacture of the COVID-19 vaccine:production,affordability,allocation and deployment.The adenovirus-vectored and mRNA-based vaccines for COVID-19 showed the highest efficacy after the first and second doses,respectively.The mRNA-based vaccines had higher side effects.Remarkably few experienced extreme adverse effects and all stimulated robust immune responses.
基金national ninth five-year study program for tackling key scientific problems,No.03-01-01
文摘AIM:To investigate the protective efficacy of H2 strain attenuated live hepatitis A vaccines (H2-strain vaccines) in hepatitis A (HA) outbreaks.METHODS:With the permission of their parents, 5551 pre-school and grade 1-3 primary school children were inoculated with 1 dose (10(6.5) TCID(50)) of H2 strain vaccines in a nonrandomized, controlled trial conducted in Fucheng County, Hebei Province in May 1997.Another 6485 children in the same grades and compatible in gender and age were enrolled as controls. Epidemiological and serological survey was conducted to evaluate the protective efficacy of the vaccines. ELISA was used to detect serum IgM anti-HAV.RESULTS:HA outbreak started in early May 1998, peaked in the middle of the same month, and lasted about 80 days. Overall 302 HA cases were found, 192(63.58%) were 5-9 years old. One vaccinee and 25 control cases were found to have hepatitis A, which account for 0.28% (1/356) and 5.92% (25/422) of all vaccinees and controls in the 14 villages, respectively. The protective efficacy of vaccines was 95.27% (95% CI: 85.83%-104.72%). In subjects tested for anti-HAV IgM from 13 villages, 1(0.40%) overt and 11(4.06%) asymptomatic HAV cases were found in 271 vaccinees but 21(6.69%) of overt and asymptomatic ones were found in 314 controls.CONCLUSION:H2 strain vaccines were excellent in preventing overt hepatitis A,but not so effective in preventing asymptomatic hepatitis A virus infection.A booster dose might be needed to get permanent reliable immunity.
基金Supported by the National Natural Science Foundation of China(Nos.32173005,31730101,31672684)the National Key Research and Development Program of China(No.2018YFD0900503)+5 种基金the Shandong Provincial Natural Science Foundation(No.ZR2020KC025)the Fundamental Research Funds for the Central Universities(No.201822015)the Director Foundation of Functional Laboratory for Marine Fisheries Science and Food Production Processes,Qingdao National Laboratory for Marine Science and Technology(No.2018MFSD-01)the NBRPC(No.2012CB114406)the Key Research and Development Program of Shandong Province(No.2016GNC115001)the Taishan Scholar Program of Shandong Province。
文摘Chemokines are cytokines that can promote the activation and migration of immune cells,and increase the recognition of antigen by antigen-presenting cells(APC).Previous studies showed that a DNA vaccine can induce humoral and cellular immune responses of flounder after immunization.To explore the improvement of chemokines on the efficiency of OmpK vaccine,two bicistronic DNA candidate vaccines were constructed and the immune responses they induced in the flounder were investigated by reverse transcription polymerase chain reaction(RT-PCR),indirect immunofl uorescent assay(IFA),H&E staining,fl ow cytometry(FCM),and quantifi cational real-time polymerase chain reaction(qRT-PCR).pBudCE4.1 plasmid as an expression vector,bicistronic DNA vaccines encoding OmpK gene and CC-motif ligand 4 gene(p-OmpK-CCL4),or Ompk gene and CC-motif ligand 19 gene(p-OmpK-CCL19)were successfully constructed.The results showed that two bicistronic DNA vaccines expressed Ompk protein of Vibrio anguillarum and CCL4/CCL19 proteins of fl ounder both in vitro and in vivo.After immunization,a large number of leucocytes in muscle were recruited at the injection site in treatment groups.The constructed vaccines induced signifi cant increases in CD4-1^(+) and CD4-2^(+) T lymphocytes,and sIgM^(+) B lymphocytes in peripheral blood,spleen,and head kidney.The percentage of T lymphocytes peaked on the 14^(th) post-vaccination day whereas that of B lymphocytes peaked in the 6^(th) post-vaccination week.Moreover,the expression profi les of 10 immune-related genes increased in muscles around the injection site,spleen,and head kidney.After the challenge,p-OmpK-CCL4 and p-OmpK-CCL19 conferred a relative percentage survival(RPS)of 74.1%and 63.3%,respectively,higher than p-OmpK alone(40.8%).In conclusion,both CCL4 and CCL19 can improve the protection of p-OmpK via evoking local immune response and then humoral and cellular immunity.CCL4 and CCL19 will be potential molecular adjuvants for use in DNA vaccines.