Populus euphratica and Populuspruinosa, sister species in the Turanga Section (Salicaceae), growing in semi-arid saline areas are known for their high salinity tolerance. In this study, by combining growth level wit...Populus euphratica and Populuspruinosa, sister species in the Turanga Section (Salicaceae), growing in semi-arid saline areas are known for their high salinity tolerance. In this study, by combining growth level with Na+ and K+ contents, the expression level of vacuolar Na+/H+ antiporters was investigated for NaCl-induced changes in P. euphratica and t3. pru- inosa calli. Compared to R euphratica, P. pruinosa calli grew well in 200 mM NaC1 stress from 14. to 21 days. Increasing the stressed time caused an increase in Na+ content concomitant with a decrease in K+ content in P. euphratica calli, whereas, with the presence of 200 mM NaCI, K+ content has a less increase in 14 and 21 days than in 7 days which was detected in R pruinosa calli. The transcript levels of six genes coding for NHX-type Na+/H+ antiporters suggest that vacuolar NHX1-NHX6 antiporters play important roles in responding to salt stress in R pruinosa. Our data suggest that there exists a higher salt tolerance for P. pruinosa than P. euphratica at the cellular level, Na+ avoidance or accumulation is observed in cellular compartments, and that expression of NHX antiporters is linked to the accumulator phenotype.展开更多
Translocation of absorbed phosphorus (P) from metabolically inactive sites to active sites in plants growing under P deprivation may increase its P utilization efficiency (PUE). Acclimation to phosphate (Pi) sta...Translocation of absorbed phosphorus (P) from metabolically inactive sites to active sites in plants growing under P deprivation may increase its P utilization efficiency (PUE). Acclimation to phosphate (Pi) starvation may be caused by a differential storage pool of vacuolar P, its release, and the intensity of re-translocation of absorbed P as P starvation inducible environmental cues (PSlEC) from ambient environment. Biomass assay and three P forms, namely inorganic (Pi), organic (Po), and acid-soluble total (Ptas) were estimated in Brassica cultivars exposed to 10 d P deprivation in the culture media. Considering that -aPi/at denotes the rate of Pi release, Pi release velocity (RSPi) was determined as the tangent to the equations obtained for Pi f(t) at the mean point in the period of greatest Pi decrease, whereas the inverse of the RSPi was an estimate of the internal Pi buffering capacity (IBCPi). Inter cultivar variations in size of the non-metabolic Pi pool, RSPi, re-translocation of Pi from less to more active metabolic sites, and preferential Pi source and sink compartments were evaluated under P starvation. The cultivar 'Brown Raya' showed the highest Pi storage ability under adequate external P supply, and a more intensive release than 'Rain Bow' and 'Dunkled' under P stress. Cultivar 'B.S.A' was inferior to 'Con-l' in its ability to store and use Pi. Roots and upper leaves were the main sink of Pi stored in the lower and middle leaves of all cultivars and showed lower IBCPi and larger RSPi values than lower and middle leaves. In another trial, six cultivars were exposed to P-free nutrition for 29 d after initial feeding on optimum nutrition for 15 d. With variable magnitude, all of the cultivars re-translocatad P from the above ground parts to their roots under P starvation, and [P] at 44 d after transplanting was higher in developing leaves compared with developed leaves. Under P deprivation, translocation of absorbed P from metabolically inactive to active sites may have helped the tolerant cultivars to establish a better rooting system, which provided a basis for tolerance against P starvation and increased PUE. A better understanding of the extent to which changes in the flux of P absorption and re-translocation under PSIEC will help to scavenge Pi from bound P reserves and will bring more sparingly soluble P into cropping systems and obtain capitalization of P reserves.展开更多
基金Financial support for this research was provided by the Program for New Century Excellent Talents in the Ministry of Education in China(NCET-09-0446),NSFC(31370396,30800865) and lzujbky-2012-k22 to YuXia Wu
文摘Populus euphratica and Populuspruinosa, sister species in the Turanga Section (Salicaceae), growing in semi-arid saline areas are known for their high salinity tolerance. In this study, by combining growth level with Na+ and K+ contents, the expression level of vacuolar Na+/H+ antiporters was investigated for NaCl-induced changes in P. euphratica and t3. pru- inosa calli. Compared to R euphratica, P. pruinosa calli grew well in 200 mM NaC1 stress from 14. to 21 days. Increasing the stressed time caused an increase in Na+ content concomitant with a decrease in K+ content in P. euphratica calli, whereas, with the presence of 200 mM NaCI, K+ content has a less increase in 14 and 21 days than in 7 days which was detected in R pruinosa calli. The transcript levels of six genes coding for NHX-type Na+/H+ antiporters suggest that vacuolar NHX1-NHX6 antiporters play important roles in responding to salt stress in R pruinosa. Our data suggest that there exists a higher salt tolerance for P. pruinosa than P. euphratica at the cellular level, Na+ avoidance or accumulation is observed in cellular compartments, and that expression of NHX antiporters is linked to the accumulator phenotype.
基金the Ministry of Education, Science, Sports and Culture (MEXT),Japan.
文摘Translocation of absorbed phosphorus (P) from metabolically inactive sites to active sites in plants growing under P deprivation may increase its P utilization efficiency (PUE). Acclimation to phosphate (Pi) starvation may be caused by a differential storage pool of vacuolar P, its release, and the intensity of re-translocation of absorbed P as P starvation inducible environmental cues (PSlEC) from ambient environment. Biomass assay and three P forms, namely inorganic (Pi), organic (Po), and acid-soluble total (Ptas) were estimated in Brassica cultivars exposed to 10 d P deprivation in the culture media. Considering that -aPi/at denotes the rate of Pi release, Pi release velocity (RSPi) was determined as the tangent to the equations obtained for Pi f(t) at the mean point in the period of greatest Pi decrease, whereas the inverse of the RSPi was an estimate of the internal Pi buffering capacity (IBCPi). Inter cultivar variations in size of the non-metabolic Pi pool, RSPi, re-translocation of Pi from less to more active metabolic sites, and preferential Pi source and sink compartments were evaluated under P starvation. The cultivar 'Brown Raya' showed the highest Pi storage ability under adequate external P supply, and a more intensive release than 'Rain Bow' and 'Dunkled' under P stress. Cultivar 'B.S.A' was inferior to 'Con-l' in its ability to store and use Pi. Roots and upper leaves were the main sink of Pi stored in the lower and middle leaves of all cultivars and showed lower IBCPi and larger RSPi values than lower and middle leaves. In another trial, six cultivars were exposed to P-free nutrition for 29 d after initial feeding on optimum nutrition for 15 d. With variable magnitude, all of the cultivars re-translocatad P from the above ground parts to their roots under P starvation, and [P] at 44 d after transplanting was higher in developing leaves compared with developed leaves. Under P deprivation, translocation of absorbed P from metabolically inactive to active sites may have helped the tolerant cultivars to establish a better rooting system, which provided a basis for tolerance against P starvation and increased PUE. A better understanding of the extent to which changes in the flux of P absorption and re-translocation under PSIEC will help to scavenge Pi from bound P reserves and will bring more sparingly soluble P into cropping systems and obtain capitalization of P reserves.