[Objective] The research aimed to provide the certain theory basis for the accurate forecast and early warning of high and low temperature in the east of Hexi Corridor.[Method] Based on the high(the daily highest temp...[Objective] The research aimed to provide the certain theory basis for the accurate forecast and early warning of high and low temperature in the east of Hexi Corridor.[Method] Based on the high(the daily highest temperature ≥35 ℃) and low(the daily lowest temperature ≤-20 ℃) temperature data in five observatories in the east of Hexi Corridor during 1960-2009,the temporal and spatial distribution,intensity,continuity and circulation situation of high and low temperature were analyzed in detail by using the statistical method.[Result] The high temperature weather in the east of Hexi Corridor mainly happened in the edge of northeast desert,and the low temperature mainly happened in the mountain zone where the altitude was higher and the edge of north desert.As the climate became warm,the high temperature days showed the weak increase trend,and the intensity strengthened.The low temperature days showed the obvious decrease trend,and the intensity weakened.The high temperature weather mainly occurred in June,August,and the low temperature mainly occurred in January,February,December.The high and low temperature weather had the durative characteristic.The strong high and low temperature mainly occurred in the durative time of high and low temperature.The high temperature weather appeared in the zone where was controlled and affected by the subtropical high.The low temperature weather appeared in the zone where the strong cold air accumulated and invaded.[Conclusion] The research had the extremely important significance on servicing for the agriculture,preventing and reducing the natural disasters,promoting the local economic development.展开更多
A suitable carburized microstructure with fine granular dispersed carbides in hypereutectoid zone,ultra fine martensite in matrix and recrystallized austenite to be refined to the grain size of 12~14 has been obtaine...A suitable carburized microstructure with fine granular dispersed carbides in hypereutectoid zone,ultra fine martensite in matrix and recrystallized austenite to be refined to the grain size of 12~14 has been obtained by a new process,which is a high carbon concentration carburizing with rare earth element at low temperature(860~880℃)in a discontinuous gas carburization furnace.There was not much difference for the microstructure in eutectic zone between this and conventional process.Forming mechanism of granular carbides has been also studied in this paper.展开更多
Piezoelectric ceramics of 0.6(Bi0.9La0.1)FeO3-0.4Pb(Ti1-xMnx)O3 (BLF-PTM) for x=0, 0.01, 0.02, and 0.03 were prepared by sol-gel process combined with a solid-state reaction method. The tan? for BLF-PTM of x=0.01 is j...Piezoelectric ceramics of 0.6(Bi0.9La0.1)FeO3-0.4Pb(Ti1-xMnx)O3 (BLF-PTM) for x=0, 0.01, 0.02, and 0.03 were prepared by sol-gel process combined with a solid-state reaction method. The tan? for BLF-PTM of x=0.01 is just 0.006 at 1 kHz, drastically decreasing by using Mn dopants. The TC increases to 490 ℃ for BLF-PTM of x=0.02. Furthermore, Mn modification effectively enhances the poling state and the piezoelectric properties of BLF-PTM. The kp, Qm, d33, and g33 of 0.34, 403, and 124 pC1·N-1 and 37×10-3 Vm·N-1 are achieved for BLF-PTM of x=0.01. The results indicate that Mn modified BLF-PTM is a competitive high power and high temperature piezoelectric material with excellent piezoelectric properties.展开更多
High resistance thin film chip resistors(0603 type) were studied,and the specifications are as follows:1 k? with tolerance about ±0.1% after laser trimming and temperature coefficient of resistance(TCR) less than...High resistance thin film chip resistors(0603 type) were studied,and the specifications are as follows:1 k? with tolerance about ±0.1% after laser trimming and temperature coefficient of resistance(TCR) less than ±15×10-6/℃.Cr-Si-Ta-Al films were prepared with Ar flow rate and sputtering power fixed at 20 standard-state cubic centimeter per minute(sccm) and 100 W,respectively.The experiment shows that the electrical properties of Cr-SiTa-Al deposition films can meet the specification requirements of 0603 ty...展开更多
Micro-supercapacitors(MSCs)are considered as highly competitive power sources for miniaturized electronics.However,narrow voltage window and poor anti-freezing properties of MSCs in conventional aqueous electrolytes l...Micro-supercapacitors(MSCs)are considered as highly competitive power sources for miniaturized electronics.However,narrow voltage window and poor anti-freezing properties of MSCs in conventional aqueous electrolytes lead to low energy density and limited environmental adaption.Herein,we report the construction of low-temperature and high-energy-density MSCs based on anti-freezing hybrid gel electrolytes(HGE)through introducing ethylene glycol(EG)additives into aqueous LiCl electrolyte.Since EG partially destroys hydrogen bond network among water molecules,the HGE exhibits maximum electrochemical stability window of 2.7 V and superior anti-freezing features with a glass transition temperature of-62.8℃.Further,the optimized MSCs using activated carbon microelectrodes possess impressive volumetric capacitance of 28.9 F cm^(-3)and energy density of 10.3 mWh cm^(-3)in the voltage of 1.6 V,2.6 times higher than MSCs tested in 1.2 V.Importantly,the MSCs display 68.3%capacitance retention even at-30℃ compared to the value at 25℃,and ultra-long cyclability with 85.7%of initial capacitance after 15,000 times,indicating extraordinary low-temperature performance.Besides,our devices offer favorable flexibility and modular integration.Therefore,this work provides a general strategy of realizing flexible,safe and anti-freezing microscale power sources,holding great potential towards subzero-temperature microelectronic applications.展开更多
A series of oxygen-doped RE_2CuO_4 (RE=Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm) was synthesized using high-pressure/oxygen-doped technique. The structures and low temperature magnetic properties were investigated. The XRD ...A series of oxygen-doped RE_2CuO_4 (RE=Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm) was synthesized using high-pressure/oxygen-doped technique. The structures and low temperature magnetic properties were investigated. The XRD patterns indicate that the structures of high oxygen pressure RE_2CuO_4 (only for RE=Sm, Eu) samples are pure T′ phase, but when RE= Gd, Tb, Dy, Ho, Er, Tm, the structures turn to disorder. The magnetic anomalies that occurred at T^30 K are observed in high oxygen pressure RE_2CuO_4. It is found that the transition temperatures of weak ferromagnetic anomalies are nearly independent of the rare-earth components. Thus, the O-doping plays an important role in anomalous magnetic properties of RE_2CuO_(4+δ). The magnetic anomalies in RE_2CuO_4 are considered to be due to ferromagnetic clusters formed in the Cu-O plane after the oxygen doping.展开更多
We briefly introduce a new high-pressure transport measurement system integrated with low temperature and magnetic field that is being established as one of the user experimental stations of the Synergetic Extreme Con...We briefly introduce a new high-pressure transport measurement system integrated with low temperature and magnetic field that is being established as one of the user experimental stations of the Synergetic Extreme Condition User Facilities in the Huairou District of Beijing, China. To demonstrate the capabilities of the system for condensed matter research, the emergence of some pressure-induced phenomena and physics related to superconductivity found previously is also introduced, and then a perspective for such an advanced high-pressure system is presented.展开更多
The electrical properties of polycrystaltine CaB6 are revealed by in-situ resistance measurements under high pressure and low temperature. Due to the existence of grain boundaries, polycrystalline CaB6 behaves with se...The electrical properties of polycrystaltine CaB6 are revealed by in-situ resistance measurements under high pressure and low temperature. Due to the existence of grain boundaries, polycrystalline CaB6 behaves with semiconducting transport properties, which is different from the semimetallic CaB6 single crystals. The temperaturedependent resistance measurement results show that before the structural phase transition at 12.3 GPa the high pressure first induces the metallization at 6.5 GPa for CAB6. Moreover, the phase diagram for CaB6 is drawn based on the investigated electric conducting properties and at least three different conducting phases are found even at moderate high pressure and low temperature, indicating that the electric nature of CaB6 is very sensitive to the environment.展开更多
High salt and low temperature are the bottlenecks for the remove of oil contaminants by enriched crude-oil degrading microbiota in Liaohe Estuarine Wetland(LEW),China.To improve the performance of crude-oil removal,mi...High salt and low temperature are the bottlenecks for the remove of oil contaminants by enriched crude-oil degrading microbiota in Liaohe Estuarine Wetland(LEW),China.To improve the performance of crude-oil removal,microbiota was further immobilized by two methods,i.e.,sodium alginate(SA),and polyvinyl alcohol and sodium alginate(PVA+SA).Results showed that the crude oil was effectively removed by the enrichment with an average degrading ratio of 19.42-31.45 mg(L d)^(−1).The optimal inoculum size for the n-alkanes removal was 10%and 99.89%.Some members of genera Acinetobacter,Actinophytocola,Aquabac-terium,Dysgonomonas,Frigidibacter,Sphingobium,Serpens,and Pseudomonas dominated in crude-oil degrading microflora.Though the removal efficiency was lower than free bacteria when the temperature was 15℃,SA and PVA+SA immobilization im-proved the resistance to salinity.The composite crude-oil degrading microbiota in this study demonstrated a perspective potential for crude oil removal from surface water under high salinity and low temperature conditions.展开更多
Low-temperature performance and high-rate discharge capability of AB5-type non-stoichiometric hydrogen storage are studied. X-ray diffraction(XRD),pressure-composition-temperature(PCT) curves and electrochemical imped...Low-temperature performance and high-rate discharge capability of AB5-type non-stoichiometric hydrogen storage are studied. X-ray diffraction(XRD),pressure-composition-temperature(PCT) curves and electrochemical impedance spectroscopy(EIS) are applied to characterize the electrochemical properties of ABx(x=4.8,4.9,5.0,5.1,5.2) alloys. The results show that the non-stoichiometric alloys exhibit better electrochemical properties compared with that of the AB5 alloy.展开更多
In this paper, the carburizing kinetics of low-carbon steel at high-temperature and short-term in liquid cast-iron were studied by metallographic microscope, chemical analysis and so on, and the microstructure of carb...In this paper, the carburizing kinetics of low-carbon steel at high-temperature and short-term in liquid cast-iron were studied by metallographic microscope, chemical analysis and so on, and the microstructure of carburized layer was also analyzed. The results show that the carburizing rate of low-carbon steel at high-temperature and short-term is so fast, and the microstructure of carburized layer possess higher carbon content, and cementite, pearlite and ferrite exist in carburized layer structure simultaneously. Besides, the kinetic equations of permeating layer forming have been presented, and the carburizing mechanism was preliminary discussed also.展开更多
Close-space sublimation(CSS)has been demonstrated as an alternative vacuum deposition technique for fabricating organic light-emitting diodes(OLEDs).CSS utilizes a planar donor plate pre-coated with organic thin films...Close-space sublimation(CSS)has been demonstrated as an alternative vacuum deposition technique for fabricating organic light-emitting diodes(OLEDs).CSS utilizes a planar donor plate pre-coated with organic thin films as an area source to rapidly transfer the donor film to a device substrate at temperatures below 200℃.CSS is also conformal and capable of depositing on odd-shaped substrates using flexible donor media.The evaporation behaviors of organic donor films under CSS were fully characterized using model OLED materials and CSS-deposited films exhibited comparable device performances in an OLED stack to films deposited by conventional point sources.The low temperature and conformal nature of CSS,along with its high material utilization and short process time,make it a promising method for fabricating flexible OLED displays.展开更多
High-energy-density-batteries working at a wide-temperature range are urgently required in many performance-critical areas.Lithium-sulfur batteries(LSB)are promising high-energy-density batteries that have the potenti...High-energy-density-batteries working at a wide-temperature range are urgently required in many performance-critical areas.Lithium-sulfur batteries(LSB)are promising high-energy-density batteries that have the potential to maintain high performance at extreme temperatures.However,some problems like severe shuttling and safety issues at high temperatures or sluggish reaction kinetics and charge-transfer process at low temperatures decrease the performance and hinder their practical uses in extreme temperature conditions.Therefore,broadening the working temperature of LSB with stable electrochemical performance becomes a crucial topic.In this paper,the key stumbling blocks for high and low-temperature LSB are comprehensively discussed.The solutions from the aspects of electrolyte and electrode materials are discussed to solve the aggravating shuttle effect and thermal safety issues under high temperature and the sluggish reaction kinetics under low temperature.Moreover,some specific promising solutions to extend the operating temperature range of LSB are also proposed and highlighted,which provide potential research directions on the practical LSB application in future.展开更多
The increasing severity of ground subsidence,ground fissure and other disasters caused by the excessive exploitation of deep underground resources has highlighted the pressing need for effective management.A significa...The increasing severity of ground subsidence,ground fissure and other disasters caused by the excessive exploitation of deep underground resources has highlighted the pressing need for effective management.A significant contributing factor to the challenges faced is the inadequacy of existing soil mechanics experimental instruments in providing effective indicators,creating a bottleneck in comprehensively understanding the mechanisms of land subsidence.It is urgent to develop a multi-field and multi-functional soil mechanics experimental system to address this issue.Based soil mechanics theories,the existing manufacturing capabilities of triaxial apparatus and the practical demands of the test system,a set of multi-field coupled high-pressure triaxial system is developed tailored for testing deep soils(at depths of approximately 3000 m)and soft rock.This system incorporates specialized design elements such as high-pressure chamber and horizontal deformation testing devices.In addition to the conventional triaxial tester functions,its distinctive feature encompass a horizontal deformation tracking measuring device,a water release testing device and temperature control device for the sample.This ensemble facilitates testing of horizontal and vertical deformation water release and other parameters of samples under a specified stress conditions,at constant or varying temperature ranging from-40℃–90℃.The accuracy of the tested parameters meets the requirements of relevant current specifications.The test system not only provides scientifically robust data for revealing the deformation and failure mechanism of soil subjected to extreme temperature,but also offers critical data support for major engineering projects,deep exploration and mitigation efforts related to soil deformation-induced disaster.展开更多
A pair of northeast-southwest-tilted mid-tropospheric ridges and troughs on the continental scale was observed to be the key circulation feature common among wintertime extensive and persistent low tempera-ture events...A pair of northeast-southwest-tilted mid-tropospheric ridges and troughs on the continental scale was observed to be the key circulation feature common among wintertime extensive and persistent low tempera-ture events (EPLTE) in China.During the persistence of such anomalous circulations,the split flow over the inner Asian continent and the influent flow over the southeast-ern coast of China correspond well to the expanded and amplified Siberian high with tightened sea level pressure gradients and hence,a strong,cold advection over south-eastern China.The western Pacific subtropical high tends to expand northward during the early stages of most EPLTEs.展开更多
Ying-Qiong Basin is a typical high-temperature and overpressure basin, which is the main battlefield of oil and gas exploration in South China Sea and has made great breakthroughs in recent years. During drilling proc...Ying-Qiong Basin is a typical high-temperature and overpressure basin, which is the main battlefield of oil and gas exploration in South China Sea and has made great breakthroughs in recent years. During drilling process in high pressure, the relationship between the deep and the pressure is directly related to the drilling safety and costs. In order to improve prediction accuracy, the VSP operation is carried out through the midway, and three points have been obtained: 1) The VSP has a higher accuracy of the interface depth in certain depth range of the drill bit. 2) When the low-frequency trend prediction is accurate before the drill bit, interval velocity of the VSP inversion is consistent with the formation velocity. 3) The VSP pressure forecast is based on the inversion layer velocity and under-compaction pressure. If the velocity prediction is not accurate, the pressure forecast must be erroneous. If the pressure has other sources, the formation pressure is not accurate even if the inversion velocity is accurate. The application scope and exploration effect of midway VSP operation are summarized and applied to Ledong 10-1 block in Yinggehai basin, which realize the breakthrough in the field of high temperature overpressure and provide the basis for other similar exploration areas to do VSP operation.展开更多
With the method of structure analysis, this work analyzes the real data of the high-temperature weather of China in 2003 and those in history, and finds out that the structure character of the high-temperature weather...With the method of structure analysis, this work analyzes the real data of the high-temperature weather of China in 2003 and those in history, and finds out that the structure character of the high-temperature weather process corresponds to the distribution of urban buildings. The result shows that excessive dense buildings could influence the atmosphere structure, which leads to the urban temperature increasing sharply. On the other hand, the structure analysis also reveals some problems on urban construction, and the corresponding countermeasure is an efficient method for high-temperature weather forecast.展开更多
The higher survival rates of Helicoverpa amigera larvae were usually observed after adverse climate which was related to extreme temperature (T) and relative humidity (RH) stresses in transgenic Bacillus thuringie...The higher survival rates of Helicoverpa amigera larvae were usually observed after adverse climate which was related to extreme temperature (T) and relative humidity (RH) stresses in transgenic Bacillus thuringiensis (Bt) cotton. The unstable resistance of Bt cotton to bollworms has been correlated with the reduced expression of CrylAc δ-endotoxin. The objective of this study was to investigate the effects of combined temperature and relative humidity stresses on the leaf CrylAc insecticidal protein expression during critical developmental stages. The study was undertaken on two transgenic cotton cultivars that share same parental background, Sikang 1 (a conventional cultivar) and Sikang 3 (a hybrid cultivar), during the 2007 and 2008 growing seasons at the Yangzhou University Farm, Yangzhou, China. The study was arranged with two factors that consisted of temperature (two levels) and relative humidity (three levels). The six T/RH treatments were 37℃/95%, 37℃/70%, 37℃/50%, 18℃/95%, 18℃/70%, and 18℃/50%. In 2007, the six treatments were imposed to the plants at peak flowering stage for 24 h; in 2008, the six treatments were applied to the plants at peak square, peak flowering, and peak boll stages for 48 h. The results of the study indicated that the leaf insecticidal protein expression in CrylAc was significantly affected by extreme temperature only at peak flowering stage, and by both extreme temperature and relative humidity during boll filling stage. The greatest reductions were observed when the stresses were applied at peak boll stage. In 2008, after 48 h stress treatment, the leaf Bt endotoxin expression reduced by 25.9-36.7 and 23.6-40.5% at peak boll stage, but only by 14.9-26.5 and 12.8-24.0% at peak flowering stage for Sikang 1 and Sikang 3, respectively. The greatest reduction was found under the low temperature combined with low relative humidity condition for both years. It is believed that the temperature and relative humidity stresses may be attributed to the reduced efficacy of Bt cotton in growing conditions in China, where extreme temperatures often increase up to 35-40℃ and/or decrease down to 15-20℃, and relative humidity may reach to 85-95% and/or reduce to 40-55% during the cotton growing season.展开更多
Microstructure observations and drop-weight tear test were performed to study the microstructures and mechanical properties of two kinds of industrial X70 and two kinds of industrial X80 grade pipeline steels. The eff...Microstructure observations and drop-weight tear test were performed to study the microstructures and mechanical properties of two kinds of industrial X70 and two kinds of industrial X80 grade pipeline steels. The effective grain size and the fraction of high angle grain boundaries in the pipeline steels were investigated by electron backscatter diffraction analysis. It is found that the low temperature toughness of the pipeline steels depends not only on the effective grain size, but also on other microstructural factors such as martensite-austenite (MA) constituents and precipitates. The morphology and size of MA constituents significantly affect the mechanical properties of the pipeline steels. Nubby MA constituents with large size have significant negative effects on the toughness, while smaller granular MA constituents have less harmful effects. Similarly, larger Ti-rich nitrides with sharp corners have a strongly negative effect on the toughness, while fine, spherical Nb-rich carbides have a less deleterious effect. The low temperature toughness of the steels is independent of the fraction of high angle grain boundaries.展开更多
In this work, a parametric approach is presented and utilized to determine the creep properties of weldments; then the model of creep strain for cross weld specimen is given. On the basis of the experimental results, ...In this work, a parametric approach is presented and utilized to determine the creep properties of weldments; then the model of creep strain for cross weld specimen is given. On the basis of the experimental results, attempt has been made to establish equations of the isochronous stress-strain for weld joint that can predict the function of loading and service time in use of the creep data of base metal and weld metal.展开更多
基金Supported by Gansu Province the Fifth Installment "Ten Plan"~~
文摘[Objective] The research aimed to provide the certain theory basis for the accurate forecast and early warning of high and low temperature in the east of Hexi Corridor.[Method] Based on the high(the daily highest temperature ≥35 ℃) and low(the daily lowest temperature ≤-20 ℃) temperature data in five observatories in the east of Hexi Corridor during 1960-2009,the temporal and spatial distribution,intensity,continuity and circulation situation of high and low temperature were analyzed in detail by using the statistical method.[Result] The high temperature weather in the east of Hexi Corridor mainly happened in the edge of northeast desert,and the low temperature mainly happened in the mountain zone where the altitude was higher and the edge of north desert.As the climate became warm,the high temperature days showed the weak increase trend,and the intensity strengthened.The low temperature days showed the obvious decrease trend,and the intensity weakened.The high temperature weather mainly occurred in June,August,and the low temperature mainly occurred in January,February,December.The high and low temperature weather had the durative characteristic.The strong high and low temperature mainly occurred in the durative time of high and low temperature.The high temperature weather appeared in the zone where was controlled and affected by the subtropical high.The low temperature weather appeared in the zone where the strong cold air accumulated and invaded.[Conclusion] The research had the extremely important significance on servicing for the agriculture,preventing and reducing the natural disasters,promoting the local economic development.
文摘A suitable carburized microstructure with fine granular dispersed carbides in hypereutectoid zone,ultra fine martensite in matrix and recrystallized austenite to be refined to the grain size of 12~14 has been obtained by a new process,which is a high carbon concentration carburizing with rare earth element at low temperature(860~880℃)in a discontinuous gas carburization furnace.There was not much difference for the microstructure in eutectic zone between this and conventional process.Forming mechanism of granular carbides has been also studied in this paper.
基金financially supported by National Nature Science Foundation of China(No.50872080)Shanghai Special Foundation of Nanotechnology(No.1052nm07300)+2 种基金Shanghai Education Development Foundation(No.08SG41)Shanghai Leading Academic Disciplines(No.S30107)Innovational Foundation of Shanghai University
文摘Piezoelectric ceramics of 0.6(Bi0.9La0.1)FeO3-0.4Pb(Ti1-xMnx)O3 (BLF-PTM) for x=0, 0.01, 0.02, and 0.03 were prepared by sol-gel process combined with a solid-state reaction method. The tan? for BLF-PTM of x=0.01 is just 0.006 at 1 kHz, drastically decreasing by using Mn dopants. The TC increases to 490 ℃ for BLF-PTM of x=0.02. Furthermore, Mn modification effectively enhances the poling state and the piezoelectric properties of BLF-PTM. The kp, Qm, d33, and g33 of 0.34, 403, and 124 pC1·N-1 and 37×10-3 Vm·N-1 are achieved for BLF-PTM of x=0.01. The results indicate that Mn modified BLF-PTM is a competitive high power and high temperature piezoelectric material with excellent piezoelectric properties.
基金Supported by Science and Technology Committee of Tianjin (No.06YFGPGX08400)Ministry of Science and Technology of China (No.2009GJF20022)Innovation Fund of Tianjin University
文摘High resistance thin film chip resistors(0603 type) were studied,and the specifications are as follows:1 k? with tolerance about ±0.1% after laser trimming and temperature coefficient of resistance(TCR) less than ±15×10-6/℃.Cr-Si-Ta-Al films were prepared with Ar flow rate and sputtering power fixed at 20 standard-state cubic centimeter per minute(sccm) and 100 W,respectively.The experiment shows that the electrical properties of Cr-SiTa-Al deposition films can meet the specification requirements of 0603 ty...
基金financially supported by the National Natural Science Foundation of China(22125903,51872283,22109160,22005297)the Dalian Innovation Support Plan for High Level Talents(2019RT09)+6 种基金the The Joint Fund of the Yulin University and the Dalian National Laboratory For Clean Energy(DNL),CAS,DNL Cooperation Fund,CAS(DNL201912,DNL201915,DNL202016,DNL202019),DICP(DICP ZZBS201802,DICP I2020032)The Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy(YLU-DNL Fund 2021002,YLU-DNL Fund 2021009)the China Postdoctoral Science Foundation(2021M693126,2020M680995,2021M703145,2021M693127)the International Postdoctoral Exchange Fellowship Program(Talent-Introduction Program)(YJ20210311)the Plan for promoting innovative talents of Education Department of Liaoning Province(LCR2018015)the Shenyang Youth Science and Technology Project(RC200444)the Natural Science Foundation of Liaoning Province(2021-MS-234)。
文摘Micro-supercapacitors(MSCs)are considered as highly competitive power sources for miniaturized electronics.However,narrow voltage window and poor anti-freezing properties of MSCs in conventional aqueous electrolytes lead to low energy density and limited environmental adaption.Herein,we report the construction of low-temperature and high-energy-density MSCs based on anti-freezing hybrid gel electrolytes(HGE)through introducing ethylene glycol(EG)additives into aqueous LiCl electrolyte.Since EG partially destroys hydrogen bond network among water molecules,the HGE exhibits maximum electrochemical stability window of 2.7 V and superior anti-freezing features with a glass transition temperature of-62.8℃.Further,the optimized MSCs using activated carbon microelectrodes possess impressive volumetric capacitance of 28.9 F cm^(-3)and energy density of 10.3 mWh cm^(-3)in the voltage of 1.6 V,2.6 times higher than MSCs tested in 1.2 V.Importantly,the MSCs display 68.3%capacitance retention even at-30℃ compared to the value at 25℃,and ultra-long cyclability with 85.7%of initial capacitance after 15,000 times,indicating extraordinary low-temperature performance.Besides,our devices offer favorable flexibility and modular integration.Therefore,this work provides a general strategy of realizing flexible,safe and anti-freezing microscale power sources,holding great potential towards subzero-temperature microelectronic applications.
文摘A series of oxygen-doped RE_2CuO_4 (RE=Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm) was synthesized using high-pressure/oxygen-doped technique. The structures and low temperature magnetic properties were investigated. The XRD patterns indicate that the structures of high oxygen pressure RE_2CuO_4 (only for RE=Sm, Eu) samples are pure T′ phase, but when RE= Gd, Tb, Dy, Ho, Er, Tm, the structures turn to disorder. The magnetic anomalies that occurred at T^30 K are observed in high oxygen pressure RE_2CuO_4. It is found that the transition temperatures of weak ferromagnetic anomalies are nearly independent of the rare-earth components. Thus, the O-doping plays an important role in anomalous magnetic properties of RE_2CuO_(4+δ). The magnetic anomalies in RE_2CuO_4 are considered to be due to ferromagnetic clusters formed in the Cu-O plane after the oxygen doping.
文摘We briefly introduce a new high-pressure transport measurement system integrated with low temperature and magnetic field that is being established as one of the user experimental stations of the Synergetic Extreme Condition User Facilities in the Huairou District of Beijing, China. To demonstrate the capabilities of the system for condensed matter research, the emergence of some pressure-induced phenomena and physics related to superconductivity found previously is also introduced, and then a perspective for such an advanced high-pressure system is presented.
基金Supported by the National Basic Research Program of China under Grant No 2011CB808204the National Natural Science Foundation of China under Grant Nos 11374121 and 11404133
文摘The electrical properties of polycrystaltine CaB6 are revealed by in-situ resistance measurements under high pressure and low temperature. Due to the existence of grain boundaries, polycrystalline CaB6 behaves with semiconducting transport properties, which is different from the semimetallic CaB6 single crystals. The temperaturedependent resistance measurement results show that before the structural phase transition at 12.3 GPa the high pressure first induces the metallization at 6.5 GPa for CAB6. Moreover, the phase diagram for CaB6 is drawn based on the investigated electric conducting properties and at least three different conducting phases are found even at moderate high pressure and low temperature, indicating that the electric nature of CaB6 is very sensitive to the environment.
基金supported by the National Key R&D Program of China(No.2018YFD0900805)the Start up Foundation for Introducing Talent of Nanjing Univer-sity of Information Science and Technology。
文摘High salt and low temperature are the bottlenecks for the remove of oil contaminants by enriched crude-oil degrading microbiota in Liaohe Estuarine Wetland(LEW),China.To improve the performance of crude-oil removal,microbiota was further immobilized by two methods,i.e.,sodium alginate(SA),and polyvinyl alcohol and sodium alginate(PVA+SA).Results showed that the crude oil was effectively removed by the enrichment with an average degrading ratio of 19.42-31.45 mg(L d)^(−1).The optimal inoculum size for the n-alkanes removal was 10%and 99.89%.Some members of genera Acinetobacter,Actinophytocola,Aquabac-terium,Dysgonomonas,Frigidibacter,Sphingobium,Serpens,and Pseudomonas dominated in crude-oil degrading microflora.Though the removal efficiency was lower than free bacteria when the temperature was 15℃,SA and PVA+SA immobilization im-proved the resistance to salinity.The composite crude-oil degrading microbiota in this study demonstrated a perspective potential for crude oil removal from surface water under high salinity and low temperature conditions.
基金Project(2006AA11A151) supported by the National Hi-Tech Research and Development Program of China
文摘Low-temperature performance and high-rate discharge capability of AB5-type non-stoichiometric hydrogen storage are studied. X-ray diffraction(XRD),pressure-composition-temperature(PCT) curves and electrochemical impedance spectroscopy(EIS) are applied to characterize the electrochemical properties of ABx(x=4.8,4.9,5.0,5.1,5.2) alloys. The results show that the non-stoichiometric alloys exhibit better electrochemical properties compared with that of the AB5 alloy.
文摘In this paper, the carburizing kinetics of low-carbon steel at high-temperature and short-term in liquid cast-iron were studied by metallographic microscope, chemical analysis and so on, and the microstructure of carburized layer was also analyzed. The results show that the carburizing rate of low-carbon steel at high-temperature and short-term is so fast, and the microstructure of carburized layer possess higher carbon content, and cementite, pearlite and ferrite exist in carburized layer structure simultaneously. Besides, the kinetic equations of permeating layer forming have been presented, and the carburizing mechanism was preliminary discussed also.
基金financially supported by the General Research Fund(16309918)from the Research Grant Council,Hong Kongfunding from the Institute for Advanced Study of the Hong Kong University of Science and Technology。
文摘Close-space sublimation(CSS)has been demonstrated as an alternative vacuum deposition technique for fabricating organic light-emitting diodes(OLEDs).CSS utilizes a planar donor plate pre-coated with organic thin films as an area source to rapidly transfer the donor film to a device substrate at temperatures below 200℃.CSS is also conformal and capable of depositing on odd-shaped substrates using flexible donor media.The evaporation behaviors of organic donor films under CSS were fully characterized using model OLED materials and CSS-deposited films exhibited comparable device performances in an OLED stack to films deposited by conventional point sources.The low temperature and conformal nature of CSS,along with its high material utilization and short process time,make it a promising method for fabricating flexible OLED displays.
基金support from the National Key R&D Program of China(No.2021YFF0500600)National Natural Science Foundation of China(No.51932005 and 52022041)+1 种基金Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(2017BT01N111)Haihe Laboratory of Sustainable Chemical Transformations(No.YYJC202108)
文摘High-energy-density-batteries working at a wide-temperature range are urgently required in many performance-critical areas.Lithium-sulfur batteries(LSB)are promising high-energy-density batteries that have the potential to maintain high performance at extreme temperatures.However,some problems like severe shuttling and safety issues at high temperatures or sluggish reaction kinetics and charge-transfer process at low temperatures decrease the performance and hinder their practical uses in extreme temperature conditions.Therefore,broadening the working temperature of LSB with stable electrochemical performance becomes a crucial topic.In this paper,the key stumbling blocks for high and low-temperature LSB are comprehensively discussed.The solutions from the aspects of electrolyte and electrode materials are discussed to solve the aggravating shuttle effect and thermal safety issues under high temperature and the sluggish reaction kinetics under low temperature.Moreover,some specific promising solutions to extend the operating temperature range of LSB are also proposed and highlighted,which provide potential research directions on the practical LSB application in future.
基金supported by National Natural Science Foundation(No.41272301 and No.42007171)Nature Fund of Hebei(No.D2021504034)Chinese Academy of Geological Sciences(No.YYWF201628).
文摘The increasing severity of ground subsidence,ground fissure and other disasters caused by the excessive exploitation of deep underground resources has highlighted the pressing need for effective management.A significant contributing factor to the challenges faced is the inadequacy of existing soil mechanics experimental instruments in providing effective indicators,creating a bottleneck in comprehensively understanding the mechanisms of land subsidence.It is urgent to develop a multi-field and multi-functional soil mechanics experimental system to address this issue.Based soil mechanics theories,the existing manufacturing capabilities of triaxial apparatus and the practical demands of the test system,a set of multi-field coupled high-pressure triaxial system is developed tailored for testing deep soils(at depths of approximately 3000 m)and soft rock.This system incorporates specialized design elements such as high-pressure chamber and horizontal deformation testing devices.In addition to the conventional triaxial tester functions,its distinctive feature encompass a horizontal deformation tracking measuring device,a water release testing device and temperature control device for the sample.This ensemble facilitates testing of horizontal and vertical deformation water release and other parameters of samples under a specified stress conditions,at constant or varying temperature ranging from-40℃–90℃.The accuracy of the tested parameters meets the requirements of relevant current specifications.The test system not only provides scientifically robust data for revealing the deformation and failure mechanism of soil subjected to extreme temperature,but also offers critical data support for major engineering projects,deep exploration and mitigation efforts related to soil deformation-induced disaster.
基金supported by the National Key Technologies R&D Program of China (Grant No.2009BAC51B02)
文摘A pair of northeast-southwest-tilted mid-tropospheric ridges and troughs on the continental scale was observed to be the key circulation feature common among wintertime extensive and persistent low tempera-ture events (EPLTE) in China.During the persistence of such anomalous circulations,the split flow over the inner Asian continent and the influent flow over the southeast-ern coast of China correspond well to the expanded and amplified Siberian high with tightened sea level pressure gradients and hence,a strong,cold advection over south-eastern China.The western Pacific subtropical high tends to expand northward during the early stages of most EPLTEs.
文摘Ying-Qiong Basin is a typical high-temperature and overpressure basin, which is the main battlefield of oil and gas exploration in South China Sea and has made great breakthroughs in recent years. During drilling process in high pressure, the relationship between the deep and the pressure is directly related to the drilling safety and costs. In order to improve prediction accuracy, the VSP operation is carried out through the midway, and three points have been obtained: 1) The VSP has a higher accuracy of the interface depth in certain depth range of the drill bit. 2) When the low-frequency trend prediction is accurate before the drill bit, interval velocity of the VSP inversion is consistent with the formation velocity. 3) The VSP pressure forecast is based on the inversion layer velocity and under-compaction pressure. If the velocity prediction is not accurate, the pressure forecast must be erroneous. If the pressure has other sources, the formation pressure is not accurate even if the inversion velocity is accurate. The application scope and exploration effect of midway VSP operation are summarized and applied to Ledong 10-1 block in Yinggehai basin, which realize the breakthrough in the field of high temperature overpressure and provide the basis for other similar exploration areas to do VSP operation.
文摘With the method of structure analysis, this work analyzes the real data of the high-temperature weather of China in 2003 and those in history, and finds out that the structure character of the high-temperature weather process corresponds to the distribution of urban buildings. The result shows that excessive dense buildings could influence the atmosphere structure, which leads to the urban temperature increasing sharply. On the other hand, the structure analysis also reveals some problems on urban construction, and the corresponding countermeasure is an efficient method for high-temperature weather forecast.
基金supported by the National Natural Science Foundation of China (30971727,31171479)the Priority Academic Program Development of Jiangsu Higher Education Institutions,China+4 种基金the Key Laboratory Foundation of Jiangsu Province,China (10KJA210057)the Doctoral Advisor Foundation of Education Department of China(20113250110001)the Natural Science Foundation of Jiangsu Province,China (BK2009324)the New Century Academic Leader Project,Yangzhou University of Chinathe Qing-Lan Project,Jiangsu Provincial Educational Department,China
文摘The higher survival rates of Helicoverpa amigera larvae were usually observed after adverse climate which was related to extreme temperature (T) and relative humidity (RH) stresses in transgenic Bacillus thuringiensis (Bt) cotton. The unstable resistance of Bt cotton to bollworms has been correlated with the reduced expression of CrylAc δ-endotoxin. The objective of this study was to investigate the effects of combined temperature and relative humidity stresses on the leaf CrylAc insecticidal protein expression during critical developmental stages. The study was undertaken on two transgenic cotton cultivars that share same parental background, Sikang 1 (a conventional cultivar) and Sikang 3 (a hybrid cultivar), during the 2007 and 2008 growing seasons at the Yangzhou University Farm, Yangzhou, China. The study was arranged with two factors that consisted of temperature (two levels) and relative humidity (three levels). The six T/RH treatments were 37℃/95%, 37℃/70%, 37℃/50%, 18℃/95%, 18℃/70%, and 18℃/50%. In 2007, the six treatments were imposed to the plants at peak flowering stage for 24 h; in 2008, the six treatments were applied to the plants at peak square, peak flowering, and peak boll stages for 48 h. The results of the study indicated that the leaf insecticidal protein expression in CrylAc was significantly affected by extreme temperature only at peak flowering stage, and by both extreme temperature and relative humidity during boll filling stage. The greatest reductions were observed when the stresses were applied at peak boll stage. In 2008, after 48 h stress treatment, the leaf Bt endotoxin expression reduced by 25.9-36.7 and 23.6-40.5% at peak boll stage, but only by 14.9-26.5 and 12.8-24.0% at peak flowering stage for Sikang 1 and Sikang 3, respectively. The greatest reduction was found under the low temperature combined with low relative humidity condition for both years. It is believed that the temperature and relative humidity stresses may be attributed to the reduced efficacy of Bt cotton in growing conditions in China, where extreme temperatures often increase up to 35-40℃ and/or decrease down to 15-20℃, and relative humidity may reach to 85-95% and/or reduce to 40-55% during the cotton growing season.
文摘Microstructure observations and drop-weight tear test were performed to study the microstructures and mechanical properties of two kinds of industrial X70 and two kinds of industrial X80 grade pipeline steels. The effective grain size and the fraction of high angle grain boundaries in the pipeline steels were investigated by electron backscatter diffraction analysis. It is found that the low temperature toughness of the pipeline steels depends not only on the effective grain size, but also on other microstructural factors such as martensite-austenite (MA) constituents and precipitates. The morphology and size of MA constituents significantly affect the mechanical properties of the pipeline steels. Nubby MA constituents with large size have significant negative effects on the toughness, while smaller granular MA constituents have less harmful effects. Similarly, larger Ti-rich nitrides with sharp corners have a strongly negative effect on the toughness, while fine, spherical Nb-rich carbides have a less deleterious effect. The low temperature toughness of the steels is independent of the fraction of high angle grain boundaries.
基金supports provided by Natural Science Foundation of Shanghai(contract No.03ZR14022)the“Tenth Five”National Key Technological Research and Development Program(contract No.2001BA803B03)National Natural Science Foundation of China(contract No.50225517)are gratefully acknowledged.
文摘In this work, a parametric approach is presented and utilized to determine the creep properties of weldments; then the model of creep strain for cross weld specimen is given. On the basis of the experimental results, attempt has been made to establish equations of the isochronous stress-strain for weld joint that can predict the function of loading and service time in use of the creep data of base metal and weld metal.