The 2024Al/Gr/SiC hybrid composite plates with 5%-10% SiC particles (volume fraction) and 3%-6% flaky graphite (Gr) (volume fraction) were fabricated by vacuum hot pressing and hot extrusion processing. The effe...The 2024Al/Gr/SiC hybrid composite plates with 5%-10% SiC particles (volume fraction) and 3%-6% flaky graphite (Gr) (volume fraction) were fabricated by vacuum hot pressing and hot extrusion processing. The effects of SiC and Gr on the microstructures and mechanical properties of the composites aged at 160, 175 and 190℃ were studied by optical microscopy, scanning electron microscopy (SEM), and hardness and tensile tests. The results indicate that the SiC particles have a more obvious effect on accelerating the aging response as compared with the Gr. Both the tensile strength and elongation are reduced by the Gr and SiC particles added into the matrix, while the Gr has a more negative influence on the elongation than the SiC particles. The tensile strength (ab), yield stress (as) and elongation (δ) of the 2024Al/3Gr/10SiC composite aged at 165℃ for 8 h are 387 MPa, 280.3 MPa and 5.7%, respectively. The hybrid composites are characterized by ductile fracture, which is associated with the ductile fracture of the matrix and the tearing of the interface between the matrix and the particles.展开更多
Diffusion bonding between aluminum and copper was performed by vacuum hot pressing at temperatures between 623 and 923 K through two thermal processes: hot compression under the deformation rate of 0.2 mrrdmin for 10...Diffusion bonding between aluminum and copper was performed by vacuum hot pressing at temperatures between 623 and 923 K through two thermal processes: hot compression under the deformation rate of 0.2 mrrdmin for 10 rain at pre-set temperatures, and additional pressing at 0.2 mm/min for 20 rain during furnace cooling. After analyzing interface, the feasible diffusion bonding temperature was suggested as 823 K. The three major intermetallic layers generated during diffusion bonding process were identified as AIECu, AlCu+AlaCu4 and Al4Cu9. Furthermore, local hardness values ofAlECU, AlCu+AlaCu4 and Al4Cu9 layers average at (4.97±0.05), (6.33±0.00) and (6.06±0.18) GPa, respectively.展开更多
Chinese fir was compressed by vacuum hot pressing and conventional hot pressing at different temperatures(180℃,200℃ and 220℃),respectively.The color parameters of the heat-compressed sample were measured,the relati...Chinese fir was compressed by vacuum hot pressing and conventional hot pressing at different temperatures(180℃,200℃ and 220℃),respectively.The color parameters of the heat-compressed sample were measured,the relative mechanical properties of the material were tested and changes in the chemistry of fir were investigated using Fourier transform infrared spectroscopy(FTIR)and Xray photoelectron spectroscopy(XPS).The results indicated that the color difference between compressed and untreated wood increased gradually with the increase of temperature.Compared with the conventional hot pressing treatment,the color difference(ΔE*)of the Chinese fir treated by vacuum hot pressing decreased by 43.73%,69.91%,and 77.17%,respectively.The mechanical properties(bending elastic modulus and bending strength)of Chinese fir treated by vacuum hot pressing were significantly improved.The 24-hour water absorption thickness expansion rate of fir treated by vacuum hot pressing is smaller than that of conventional hot pressing.It is implied that vacuum hot pressing treatment is an effective method to produce compressed wood,which can improve the mechanical properties and dimensional stability of wood,and reduce the influence of carbonization on wood color.展开更多
Titanium nitride(TiN), characterized by its high hardness and strength, was widely used as ceramic coating to improve the wear resistance of matrix materials. In this work, AlCrFeNiTi_(x) high-entropy alloy(HEA) powde...Titanium nitride(TiN), characterized by its high hardness and strength, was widely used as ceramic coating to improve the wear resistance of matrix materials. In this work, AlCrFeNiTi_(x) high-entropy alloy(HEA) powders were synthesized by direct electrochemical reduction in molten salt from the mixed metal oxides. Then,TiN ceramic coating on the AlCrFeNiTi_x bulk HEA containing the topologically close-packed(TCP) phase(σphase, Laves phase, and Ti_(3)Al phase) was prepared by vacuum hot pressing sintering, where nitride element come from boron nitride parting agent sprayed on the graphite mold. The effect of titanium content on the crystal structure, microstructure, hardness, and wear resistance of the products were investigated by X-ray diffraction, field emission scanning electron microscope, field emission electron-probe microanalysis,Vickers hardness tester, and friction–abrasion testing machine. The bulk HEAs exhibit excellent hardness and its hardness increases significantly with the increase of titanium content. The wear mechanism changes from both of predominantly delamination and accompanied oxidative wear to single delamination wear,which is due to ultra-high melting point and high hot hardness of TiN, that can effectively prevent the oxidation and deformation of the worn surface. Formation of the ceramic coatings containing the TiN second phase and TCP phase are the key factor to AlCrFeNiTi_x alloy with the excellent hardness and wear properties.展开更多
Titanium metal matrix composites (TiMMCs) reinforced by continuous silicon carbide fibres are being developed for aerospace applications. TiMMCs manufactured by the consolidation of matrix-coated fibre (MCF) metho...Titanium metal matrix composites (TiMMCs) reinforced by continuous silicon carbide fibres are being developed for aerospace applications. TiMMCs manufactured by the consolidation of matrix-coated fibre (MCF) method offer optimum properties because of the resulting uniform fibre distribution, minimum fibre damage and fibre volume fraction control. In this paper, the consolidation of Ti-6Al-4V matrix-coated SiC fibres during vacuum hot pressing has been investigated. Experiments were carried out on multi-ply MCFs under vacuum hot pressing (VHP). In contrast to most of existing studies, the fibre, arrangement has been carefully controlled either in square or hexagonal arrays throughout the consolidated sample. This has enabled the dynamic consolidation behaviour of MCFs to be demonstrated by eliminating the fibre re-arrangement during the VHP process. The microstructural evolution of the matrix coating was reported and the deformation mechanisms involved were discussed.展开更多
Gr/CuCr10 alloys with graphene contents of 0.1 wt.%,0.3 wt.%,0.5 wt.%,and 0.7 wt.%were prepared by a hot pressing sintering process.Compared with CuCr10 alloy,the relative density of CuCr10 composite with 0.3 wt.%addi...Gr/CuCr10 alloys with graphene contents of 0.1 wt.%,0.3 wt.%,0.5 wt.%,and 0.7 wt.%were prepared by a hot pressing sintering process.Compared with CuCr10 alloy,the relative density of CuCr10 composite with 0.3 wt.%addition of graphene remained constant,while the electrical conductivity increased from 62.2%(IACS)to 69.5%(IACS).The main reason for the increased electrical conductivity is that the addition of graphene leads to the size reduction of Cr phase and thus reduces the scattering of electrons.In addition,Brinell’s hardness of 0.3 wt.%Gr/CuCr10 composite increased from HB 91.8 to HB 99.6 compared with that of CuCr10 alloy.The graphene was mainly distributed at the interface of Cu and Cr.A nano-Cr;C;phase,which has been observed through HRTEM,is the main reason for the wettability enhancement at the interface of Cu and Cr,thus improving the hardness of the material.展开更多
文摘The 2024Al/Gr/SiC hybrid composite plates with 5%-10% SiC particles (volume fraction) and 3%-6% flaky graphite (Gr) (volume fraction) were fabricated by vacuum hot pressing and hot extrusion processing. The effects of SiC and Gr on the microstructures and mechanical properties of the composites aged at 160, 175 and 190℃ were studied by optical microscopy, scanning electron microscopy (SEM), and hardness and tensile tests. The results indicate that the SiC particles have a more obvious effect on accelerating the aging response as compared with the Gr. Both the tensile strength and elongation are reduced by the Gr and SiC particles added into the matrix, while the Gr has a more negative influence on the elongation than the SiC particles. The tensile strength (ab), yield stress (as) and elongation (δ) of the 2024Al/3Gr/10SiC composite aged at 165℃ for 8 h are 387 MPa, 280.3 MPa and 5.7%, respectively. The hybrid composites are characterized by ductile fracture, which is associated with the ductile fracture of the matrix and the tearing of the interface between the matrix and the particles.
基金Project (10037273) supported by the Ministry of Knowledge Economy, Korea
文摘Diffusion bonding between aluminum and copper was performed by vacuum hot pressing at temperatures between 623 and 923 K through two thermal processes: hot compression under the deformation rate of 0.2 mrrdmin for 10 rain at pre-set temperatures, and additional pressing at 0.2 mm/min for 20 rain during furnace cooling. After analyzing interface, the feasible diffusion bonding temperature was suggested as 823 K. The three major intermetallic layers generated during diffusion bonding process were identified as AIECu, AlCu+AlaCu4 and Al4Cu9. Furthermore, local hardness values ofAlECU, AlCu+AlaCu4 and Al4Cu9 layers average at (4.97±0.05), (6.33±0.00) and (6.06±0.18) GPa, respectively.
基金The Authors acknowledge funding support by the National Key R&D Program of China(2017YFC0703501)the Doctorate Fellowship Foundation of the Nanjing Forestry University and the China Double First Class University Plan.
文摘Chinese fir was compressed by vacuum hot pressing and conventional hot pressing at different temperatures(180℃,200℃ and 220℃),respectively.The color parameters of the heat-compressed sample were measured,the relative mechanical properties of the material were tested and changes in the chemistry of fir were investigated using Fourier transform infrared spectroscopy(FTIR)and Xray photoelectron spectroscopy(XPS).The results indicated that the color difference between compressed and untreated wood increased gradually with the increase of temperature.Compared with the conventional hot pressing treatment,the color difference(ΔE*)of the Chinese fir treated by vacuum hot pressing decreased by 43.73%,69.91%,and 77.17%,respectively.The mechanical properties(bending elastic modulus and bending strength)of Chinese fir treated by vacuum hot pressing were significantly improved.The 24-hour water absorption thickness expansion rate of fir treated by vacuum hot pressing is smaller than that of conventional hot pressing.It is implied that vacuum hot pressing treatment is an effective method to produce compressed wood,which can improve the mechanical properties and dimensional stability of wood,and reduce the influence of carbonization on wood color.
基金supported by the National Natural Science Foundation of China (52174299)the Chongqing Key Laboratory of Vanadium-Titanium Metallurgy and New Materials, Chongqing University, Chongqing 400044, China。
文摘Titanium nitride(TiN), characterized by its high hardness and strength, was widely used as ceramic coating to improve the wear resistance of matrix materials. In this work, AlCrFeNiTi_(x) high-entropy alloy(HEA) powders were synthesized by direct electrochemical reduction in molten salt from the mixed metal oxides. Then,TiN ceramic coating on the AlCrFeNiTi_x bulk HEA containing the topologically close-packed(TCP) phase(σphase, Laves phase, and Ti_(3)Al phase) was prepared by vacuum hot pressing sintering, where nitride element come from boron nitride parting agent sprayed on the graphite mold. The effect of titanium content on the crystal structure, microstructure, hardness, and wear resistance of the products were investigated by X-ray diffraction, field emission scanning electron microscope, field emission electron-probe microanalysis,Vickers hardness tester, and friction–abrasion testing machine. The bulk HEAs exhibit excellent hardness and its hardness increases significantly with the increase of titanium content. The wear mechanism changes from both of predominantly delamination and accompanied oxidative wear to single delamination wear,which is due to ultra-high melting point and high hot hardness of TiN, that can effectively prevent the oxidation and deformation of the worn surface. Formation of the ceramic coatings containing the TiN second phase and TCP phase are the key factor to AlCrFeNiTi_x alloy with the excellent hardness and wear properties.
文摘Titanium metal matrix composites (TiMMCs) reinforced by continuous silicon carbide fibres are being developed for aerospace applications. TiMMCs manufactured by the consolidation of matrix-coated fibre (MCF) method offer optimum properties because of the resulting uniform fibre distribution, minimum fibre damage and fibre volume fraction control. In this paper, the consolidation of Ti-6Al-4V matrix-coated SiC fibres during vacuum hot pressing has been investigated. Experiments were carried out on multi-ply MCFs under vacuum hot pressing (VHP). In contrast to most of existing studies, the fibre, arrangement has been carefully controlled either in square or hexagonal arrays throughout the consolidated sample. This has enabled the dynamic consolidation behaviour of MCFs to be demonstrated by eliminating the fibre re-arrangement during the VHP process. The microstructural evolution of the matrix coating was reported and the deformation mechanisms involved were discussed.
基金financially supported by the National Natural Science Foundation of China(No.51871111)Jinan Changan Graphene Aluminum Material Technology Co.,Ltd.,Chinathe Dingmei New Material Technology Co.,Ltd.,China。
文摘Gr/CuCr10 alloys with graphene contents of 0.1 wt.%,0.3 wt.%,0.5 wt.%,and 0.7 wt.%were prepared by a hot pressing sintering process.Compared with CuCr10 alloy,the relative density of CuCr10 composite with 0.3 wt.%addition of graphene remained constant,while the electrical conductivity increased from 62.2%(IACS)to 69.5%(IACS).The main reason for the increased electrical conductivity is that the addition of graphene leads to the size reduction of Cr phase and thus reduces the scattering of electrons.In addition,Brinell’s hardness of 0.3 wt.%Gr/CuCr10 composite increased from HB 91.8 to HB 99.6 compared with that of CuCr10 alloy.The graphene was mainly distributed at the interface of Cu and Cr.A nano-Cr;C;phase,which has been observed through HRTEM,is the main reason for the wettability enhancement at the interface of Cu and Cr,thus improving the hardness of the material.