The 8% (mass fraction) yttrium-partially-stabilized zirconia (8YSZ) ceramic was fabricated via liquid phase sintering at 1 200-1 400℃ by adding different mass ratios of CuO-16.7%TiO2 (molar fraction) as sinteri...The 8% (mass fraction) yttrium-partially-stabilized zirconia (8YSZ) ceramic was fabricated via liquid phase sintering at 1 200-1 400℃ by adding different mass ratios of CuO-16.7%TiO2 (molar fraction) as sintering aid. Relative density, microstructure, Vickers hardness and bending strength as a function of sintering temperature and additive content were investigated. The experiment results show that liquid phase sintering at low temperature can be realized through adding CUO-16.7% TiO2 to 8YSZ. The Vickers hardness and bending strength of samples with sintering aid are generally much higher than those of samples without sintering aid for all sintering temperatures, and increase with the increase of sintering temperature. When the addition content of CUO-16.7% TiO2 is beyond 0.5%, the relative density, Vickers hardness and bending strength decrease with the increase of the mass ratio of sintering aid. Low additions of sintering aid are beneficial to aiding densification; high additions of sintering aid are detrimental to the sintered properties mainly due to greater amounts of pores generated by the volatilization of oxygen with the eutectic reaction between copper oxide and titanium dioxide. It is found that the fine grain size and high relative density are two main reasons of the high bending strength and Vickers hardness of the materials.展开更多
In this work, network former SiO_2 and network intermediate Al_2O_3 were introduced into typical low-melting binary compositions CaO·B_2O_3, CaO·2B_2O_3, and BaO·B_2O_3 via an aqueous solid-state suspen...In this work, network former SiO_2 and network intermediate Al_2O_3 were introduced into typical low-melting binary compositions CaO·B_2O_3, CaO·2B_2O_3, and BaO·B_2O_3 via an aqueous solid-state suspension milling route. Accordingly, multiple-phase aluminosilicate glass-ceramics were directly obtained via liquid-phase sintering at temperatures below 950°C. On the basis of liquid-phase sintering theory, mineral-phase evolutions and glass-phase formations were systematically investigated in a wide MO–SiO_2–Al_2O_3–B_2O_3(M = Ca, Ba) composition range. The results indicate that major mineral phases of the aluminosilicate glass-ceramics are Al_(20)B_4O_(36), CaAl_2Si_2O_8, and BaAl_2Si_2O_8 and that the glass-ceramic materials are characterized by dense microstructures and excellent dielectric properties.展开更多
The bulk Ti3SiC2 specimens with less than 1 wt% TiC impurity were prepared by vacuum sintering technique, and the average grain size was about 5-6 μm in the elongated direction. When the sintering temperature, soakin...The bulk Ti3SiC2 specimens with less than 1 wt% TiC impurity were prepared by vacuum sintering technique, and the average grain size was about 5-6 μm in the elongated direction. When the sintering temperature, soaking time and heating rate were 1 400 ℃, 1 h and 10℃·min-1, respectively, the highest relative density of Ti3SiC2 specimens could reach 97.8%. Meanwhile, the lowest coefficient of friction (COF) and wear rate (WR) of the Ti3SiC2 samples were 0.55 and 1.37×10-3 mm3(Nm)-1 at a sliding speed of 0.35 m/s, load pressure of 10 N and ambient condition, respectively. The COF of the Ti3SiC2 sample reduced with the increasing of the load pressure, while the WRs fluctuated little. The WR increased with the increasing of the sliding speed, and weakly influenced the COF. These changing behaviors could be attributed to the presence and coverage of the amorphous mixture oxide film ofTi, Si, A1, and Fe on the Ti3SiC2 friction surface. The self- antifriction mechanism led to reducing of the COF. The increasing of the WR was attributed to the wearing consumption.展开更多
Mo-Swt%Cu nanocomposite powders were fabricated by mechanical alloying, and full density alloy was obtained via liquid-phase sintering and post-treatment process. The microstructure of Mo-8wt%Cu alloy was investigated...Mo-Swt%Cu nanocomposite powders were fabricated by mechanical alloying, and full density alloy was obtained via liquid-phase sintering and post-treatment process. The microstructure of Mo-8wt%Cu alloy was investigated by scanning elec-tron microscope (SEM) , and the effects of process parameters on relative density, tensile strength and elongation were stud-ied. The results indicate that the relative density of Mo-Cu alloy is 98. 6% after sintering at 1 250℃ for 30 min, and its micro-structure is composite network The full density of Mo-Cu alloy can be obtained when specimens are treated through deforma-tion strengthening process of rotating forging and hydrostatic extrusion The tensile strength and elongation rate are 576 MPa and 5. 8% ,respectively, when hydrostatic extrusion deformation degree is 40%.展开更多
Arsenic materials have attracted great attention due to their unique properties.However,research concerning iron-arsenic(Fe-As) alloys is very scarce due to the volatility of As at low temperature and the high melting...Arsenic materials have attracted great attention due to their unique properties.However,research concerning iron-arsenic(Fe-As) alloys is very scarce due to the volatility of As at low temperature and the high melting point of Fe.Herein,a new Fe-As alloy was obtained by mechanical alloying(MA) followed by vacuum hot-pressed sintering(VHPS).Moreover,a systematic study was carried out on the microstructural evolution,phase composition,leaching toxicity of As,and physical and mechanical properties of Fe-As alloys with varying weight fractions of As(20%,25%,30%,35%,45%,55%,65%,and 75%).The results showed that pre-alloyed metallic powders(PAMPs) have a fine grain size and specific supersaturated solid solution after MA,which could effectively improve the mechanical properties of Fe-As alloys by VHPS.A high density(> 7.350 g·cm^(-3)),low toxicity,and excellent mechanical properties could be obtained for FeAs alloys sintered via VHPS by adding an appropriate amount of As,which is more valuable than commercial Fe-As products.The Fe-25% As alloy with low toxicity and a relatively high density(7.635 g·cm^(-3)) provides an ultra-high compressive strength(1989.19 MPa),while the Fe-65% As alloy owns the maximum Vickers hardness(HVo.5 899.41).After leaching by the toxicity characteristic leaching procedure(TCLP),these alloys could still maintain good mechanical performance,and the strengthening mechanisms of Fe-As alloys before and after leaching were clarified.Changes in the grain size,micro structure,and phase distribution induced significant differences in the compressive strength and hardness.展开更多
Monoclinic SrAl_(2)Si_(2)O_(8) ceramics for Sr immobilization were prepared by a liquid-phase sintering method.The sintering temperature,mineral phase composition,microstructure,flexural strength,bulk density,and Sr i...Monoclinic SrAl_(2)Si_(2)O_(8) ceramics for Sr immobilization were prepared by a liquid-phase sintering method.The sintering temperature,mineral phase composition,microstructure,flexural strength,bulk density,and Sr ion leaching characteristics of the SrAl_(2)Si_(2)O_(8) ceramics were investigated.A crystalline monoclinic SrAl_(2)Si_(2)O_(8) phase formed through liquid-phase sintering at 1223 K.The introduction of four flux agents(B_(2)O_(3),CaO·2B_(2)O_(3),SrO·2B_(2)O_(3),and BaO·2B_(2)O_(3))to the SrAl_(2)Si_(2)O_(8) ceramics not only reduced the densification temperature and decreased the volatilization of Sr during high-temperature sintering but also impacted the mechanical properties of the ceramics.Product consistency tests showed that the leaching concentration of Sr ions in the sample with flux agent B_(2)O_(3) was the lowest,whereas that of Sr ions in the sample with flux agent BaO·2B_(2)O_(3) was the highest.These results show that the leaching concentration of Sr ions depends largely on the amorphous phase in the ceramics.Meanwhile,the formation of mineral analog ceramics containing Sr is an important factor to improve Sr immobilization.展开更多
The WC-Co composite coatings bonded tightly to steel substrate have been made by vacuum fusion sinter (VFS). The concentration distribution of some components were measured by the electron probe, and the microstruct...The WC-Co composite coatings bonded tightly to steel substrate have been made by vacuum fusion sinter (VFS). The concentration distribution of some components were measured by the electron probe, and the microstructure and morphology of VFS coatings were observed and analyzed by SEM, X-ray diffractometer and microhardness tester. Diffusion coefficient of every element was calculated by using the experimental results. The influence of the interracial diffusion on the microstructure, Vickers hardness and interracial bond strength of the VFS coatings was studied in detail. The experimental results show that there is a metallurgical bond area between the VFS WC-Co coatings and the steel substrate. The VFS coatings are characterized by the gradient hardness of the interface and the high bond strength to the steel substate, both of which are beneficial to the improvement of the wear resistance and corrosion resistance.展开更多
A new kind of sintering process, combined sintering process. i.e. vacuum sintering plus hot isolate pressure sintering (HIP), was introduced for producing ultrafine WC-10% Co (mass fraction. so as the follows) cemen...A new kind of sintering process, combined sintering process. i.e. vacuum sintering plus hot isolate pressure sintering (HIP), was introduced for producing ultrafine WC-10% Co (mass fraction. so as the follows) cemented carbides. The effects of some processing parameters on the microstructure and mechanical properties of the obtained cemented carbides were studied. The results show that the rapid shrinkage and the pronounced densification of tile cemented carbides took place during the vacuum sintering stage, which is intinaately correlated with the local liquid sintering occurred during this earl} sintering stage for the high surface activity of ultrafine WC-Co powder. The way of high pressure imposing. isothermal treatment cycle during ac.acuum sintering and HIP sintering stage directly influence the densitication of compacts and the mechanical properties of the produced WC-10%Co cemented carbides.展开更多
The TBC system is examined with regards to its response to thermal exposure at high temperature. It has been established before that the thermally grown oxide (TGO) layer that forms upon bond coat oxidation is the key...The TBC system is examined with regards to its response to thermal exposure at high temperature. It has been established before that the thermally grown oxide (TGO) layer that forms upon bond coat oxidation is the key factor determining the performance of the TBC system and/or its failure. However, characteristics of TGO growth, bond coat rumpling, principles governing failure of TBC systems and the various failure mechanisms have been studied extensively in case of just super alloy with bond coat or with thick top coating. In this study super alloy/bond coat system with single splats of YSZ instead of thick topcoat is analyzed in order to scrutinize the effect on the first layer of splats during thermal exposure. The splats with microcracks are the building blocks of the top coat. The most important aspect of this layer is the inherent inter-splat and intra-splat porosity which undergoes sintering during thermal exposure. The interactions between the YSZ splats and the evolving TGO is directly linked to the presence or absence of bond coat oxidation. Therefore the high temperature behavior of this system is analyzed with variations in heat treatment involving, temperature, duration and environment of thermal exposure.展开更多
The TBC system’s response to thermal exposure at high temperature is discussed here. The relevance of the microstructural aspects of each component of the TBC system is emphasized. The top coat is a YSZ ceramic coati...The TBC system’s response to thermal exposure at high temperature is discussed here. The relevance of the microstructural aspects of each component of the TBC system is emphasized. The top coat is a YSZ ceramic coating consisting of a collection of splats on top of one another. The most important aspect of this layer is the inherent inter-splat and intra-splat porosity which undergoes sintering during thermal exposure. This study investigates the effect of thermal exposure on the microstructure and sintering behavior in single splats produced using different starting powders since this has been shown to influence the basic microstructure of YSZ topcoat. The bond coat is an MCrAlY metallic coating which serves as an Al reservoir and allows the formation of a protective alumina, Thermally Grown Oxide (TGO) layer between the bond coat (BC) and the top coat (TC) layers. This oxide scale formed upon thermal exposure prevents further oxidation of the underlying component (substrate) and thus provides protection. As such, the content of free Al in the bond coat layer is of significance and makes it crucial to understand the influence of bond coat microstructure evolution and oxidation involved during its formation. The interaction between the bond coat, the TGO and the top coat layers is examined in this study to understand the high temperature behavior of the TBC system with regards to variations in the top coat and bond coat material systems used.展开更多
Si2N2O ceramics were prepared using amorphous Si3N4 as the raw material and Li2CO3 as the sintering additive through vacuum multi-stage sintering.The influence of the Li2CO3 addition(0%,1%,2%,3%,and 5%,by mass)on the ...Si2N2O ceramics were prepared using amorphous Si3N4 as the raw material and Li2CO3 as the sintering additive through vacuum multi-stage sintering.The influence of the Li2CO3 addition(0%,1%,2%,3%,and 5%,by mass)on the phase composition,the microstructure,the porosity,the mechanical properties,the dielectric constant and the tangent of the dielectric loss angle of the porous Si2N2O ceramics was investigated.The results reveal that a suitable addition of Li2CO3 can promote the generation of Si2N2O but excessive or inadequate Li2CO3 causes decomposition of Si2N2O ceramics.The prepared porous Si2N2O ceramics have good mechanical properties,good thermal shock resistance,and low dielectric properties,which have excellent potential for application in microwave sintering furnaces.展开更多
Regenerative artificial bone material and bone parts were fabricated using vacuum-sintered bodies of a “titanium medical apatite (TMA?)” that is formed by chemically connecting Ti oxide molecules to the reactive [Ca...Regenerative artificial bone material and bone parts were fabricated using vacuum-sintered bodies of a “titanium medical apatite (TMA?)” that is formed by chemically connecting Ti oxide molecules to the reactive [Ca10 (PO4 )6 ] group of hydroxyapatite (HAp). Sintering at temperatures of 1273 - 1773 K caused this TMA sintered bodies to recrystallize and form a varying mix of α-TCP (tricalcium phosphate), β-TCP and Perovskite-CaTiO3 phases. The Perovskite crystals proved to be quite stable and hard, forming a uniform distribution of similarly sized fibers in all directions under vacuum sintering, but an irregular distribution and size when sintered in the presence of oxygen. Complete recrystallization was achieved by vacuum sintering at temperatures in excess of 1473 K. In particular, TMA vacuum-sintered bodies at 1573 K are given the maximum value;a Vickers hardness of 400, a bending strength of 43 MPa, a compressive strength of 270 MPa and a density of approximately 2300 kg/m3 was achieved that closely corresponds to that of compact bone or a tooth. As these TMA bodies could also be cut into various forms, they are considered a promising biomaterial for use as artificial bone in the regeneration of natural bone, or to provide reinforcement of bone junctions in dental and orthopedic surgery.展开更多
The content of partially stabilized zirconia has remarkable influence on densification and mechanical properties of Al2O3/PSZ(3Y) ceramic composites. When 15%PSZ(3Y) is added to Al2O3, after vacuum sintering for 2...The content of partially stabilized zirconia has remarkable influence on densification and mechanical properties of Al2O3/PSZ(3Y) ceramic composites. When 15%PSZ(3Y) is added to Al2O3, after vacuum sintering for 2 h at 1 550 ℃, the fracture toughness and bending strength of the Al2O3/PSZ(3Y) ceramic composite reaches 8.2 MPa·m1/2 and 884 MPa, respectively. The effect of the content of PSZ(3Y) on relative density and mechanical properties was investigated. The change of m-ZrO2 and t-ZrO2 phases content before and after fracture was measured by X-ray diffraction quantitative phase analysis. It is confirmed that improvement in bending strength and fracture toughness of the Al2O3/PSZ(3Y) ceramic composite is due to the phase transformation toughening mechanism of PSZ(3Y).展开更多
基金Project(200805331062) supported by the Research Fund for the Doctoral Program of Higher Education of ChinaProject(2010FJ4061) supported by the Science and Technology Program of Hunan Province,China
文摘The 8% (mass fraction) yttrium-partially-stabilized zirconia (8YSZ) ceramic was fabricated via liquid phase sintering at 1 200-1 400℃ by adding different mass ratios of CuO-16.7%TiO2 (molar fraction) as sintering aid. Relative density, microstructure, Vickers hardness and bending strength as a function of sintering temperature and additive content were investigated. The experiment results show that liquid phase sintering at low temperature can be realized through adding CUO-16.7% TiO2 to 8YSZ. The Vickers hardness and bending strength of samples with sintering aid are generally much higher than those of samples without sintering aid for all sintering temperatures, and increase with the increase of sintering temperature. When the addition content of CUO-16.7% TiO2 is beyond 0.5%, the relative density, Vickers hardness and bending strength decrease with the increase of the mass ratio of sintering aid. Low additions of sintering aid are beneficial to aiding densification; high additions of sintering aid are detrimental to the sintered properties mainly due to greater amounts of pores generated by the volatilization of oxygen with the eutectic reaction between copper oxide and titanium dioxide. It is found that the fine grain size and high relative density are two main reasons of the high bending strength and Vickers hardness of the materials.
基金financially supported by the Fundamental Research Funds for the Central Universities of China(No.A0920502051513-5)
文摘In this work, network former SiO_2 and network intermediate Al_2O_3 were introduced into typical low-melting binary compositions CaO·B_2O_3, CaO·2B_2O_3, and BaO·B_2O_3 via an aqueous solid-state suspension milling route. Accordingly, multiple-phase aluminosilicate glass-ceramics were directly obtained via liquid-phase sintering at temperatures below 950°C. On the basis of liquid-phase sintering theory, mineral-phase evolutions and glass-phase formations were systematically investigated in a wide MO–SiO_2–Al_2O_3–B_2O_3(M = Ca, Ba) composition range. The results indicate that major mineral phases of the aluminosilicate glass-ceramics are Al_(20)B_4O_(36), CaAl_2Si_2O_8, and BaAl_2Si_2O_8 and that the glass-ceramic materials are characterized by dense microstructures and excellent dielectric properties.
基金Funded by the Natural Science Foundation of Hubei Province(No.2012FFB05104)the National Natural Science Foundation of China (No.51275370)+3 种基金the Fundamental Research Funds for the Central Universities (No.2010-II-020)the Project for Science and Technology Plan of Wuhan City (No.2013010501010139)the Academic Leader Program of Wuhan City (No.201150530146)the Project for Teaching and Research Project of Wuhan University of Technology(No.2012016)
文摘The bulk Ti3SiC2 specimens with less than 1 wt% TiC impurity were prepared by vacuum sintering technique, and the average grain size was about 5-6 μm in the elongated direction. When the sintering temperature, soaking time and heating rate were 1 400 ℃, 1 h and 10℃·min-1, respectively, the highest relative density of Ti3SiC2 specimens could reach 97.8%. Meanwhile, the lowest coefficient of friction (COF) and wear rate (WR) of the Ti3SiC2 samples were 0.55 and 1.37×10-3 mm3(Nm)-1 at a sliding speed of 0.35 m/s, load pressure of 10 N and ambient condition, respectively. The COF of the Ti3SiC2 sample reduced with the increasing of the load pressure, while the WRs fluctuated little. The WR increased with the increasing of the sliding speed, and weakly influenced the COF. These changing behaviors could be attributed to the presence and coverage of the amorphous mixture oxide film ofTi, Si, A1, and Fe on the Ti3SiC2 friction surface. The self- antifriction mechanism led to reducing of the COF. The increasing of the WR was attributed to the wearing consumption.
文摘Mo-Swt%Cu nanocomposite powders were fabricated by mechanical alloying, and full density alloy was obtained via liquid-phase sintering and post-treatment process. The microstructure of Mo-8wt%Cu alloy was investigated by scanning elec-tron microscope (SEM) , and the effects of process parameters on relative density, tensile strength and elongation were stud-ied. The results indicate that the relative density of Mo-Cu alloy is 98. 6% after sintering at 1 250℃ for 30 min, and its micro-structure is composite network The full density of Mo-Cu alloy can be obtained when specimens are treated through deforma-tion strengthening process of rotating forging and hydrostatic extrusion The tensile strength and elongation rate are 576 MPa and 5. 8% ,respectively, when hydrostatic extrusion deformation degree is 40%.
基金financially supported by the National Natural Science Foundation of China (No.52104406)the Natural Science Foundation of Hunan Province (No.2022JJ20074)+1 种基金the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No.52121004)the National Natural Science Foundation of China for Distinguished Young Scholars (No.51825403)。
文摘Arsenic materials have attracted great attention due to their unique properties.However,research concerning iron-arsenic(Fe-As) alloys is very scarce due to the volatility of As at low temperature and the high melting point of Fe.Herein,a new Fe-As alloy was obtained by mechanical alloying(MA) followed by vacuum hot-pressed sintering(VHPS).Moreover,a systematic study was carried out on the microstructural evolution,phase composition,leaching toxicity of As,and physical and mechanical properties of Fe-As alloys with varying weight fractions of As(20%,25%,30%,35%,45%,55%,65%,and 75%).The results showed that pre-alloyed metallic powders(PAMPs) have a fine grain size and specific supersaturated solid solution after MA,which could effectively improve the mechanical properties of Fe-As alloys by VHPS.A high density(> 7.350 g·cm^(-3)),low toxicity,and excellent mechanical properties could be obtained for FeAs alloys sintered via VHPS by adding an appropriate amount of As,which is more valuable than commercial Fe-As products.The Fe-25% As alloy with low toxicity and a relatively high density(7.635 g·cm^(-3)) provides an ultra-high compressive strength(1989.19 MPa),while the Fe-65% As alloy owns the maximum Vickers hardness(HVo.5 899.41).After leaching by the toxicity characteristic leaching procedure(TCLP),these alloys could still maintain good mechanical performance,and the strengthening mechanisms of Fe-As alloys before and after leaching were clarified.Changes in the grain size,micro structure,and phase distribution induced significant differences in the compressive strength and hardness.
基金This work was financially supported by the National Natural Science Foundation of China(No.11605116).
文摘Monoclinic SrAl_(2)Si_(2)O_(8) ceramics for Sr immobilization were prepared by a liquid-phase sintering method.The sintering temperature,mineral phase composition,microstructure,flexural strength,bulk density,and Sr ion leaching characteristics of the SrAl_(2)Si_(2)O_(8) ceramics were investigated.A crystalline monoclinic SrAl_(2)Si_(2)O_(8) phase formed through liquid-phase sintering at 1223 K.The introduction of four flux agents(B_(2)O_(3),CaO·2B_(2)O_(3),SrO·2B_(2)O_(3),and BaO·2B_(2)O_(3))to the SrAl_(2)Si_(2)O_(8) ceramics not only reduced the densification temperature and decreased the volatilization of Sr during high-temperature sintering but also impacted the mechanical properties of the ceramics.Product consistency tests showed that the leaching concentration of Sr ions in the sample with flux agent B_(2)O_(3) was the lowest,whereas that of Sr ions in the sample with flux agent BaO·2B_(2)O_(3) was the highest.These results show that the leaching concentration of Sr ions depends largely on the amorphous phase in the ceramics.Meanwhile,the formation of mineral analog ceramics containing Sr is an important factor to improve Sr immobilization.
文摘The WC-Co composite coatings bonded tightly to steel substrate have been made by vacuum fusion sinter (VFS). The concentration distribution of some components were measured by the electron probe, and the microstructure and morphology of VFS coatings were observed and analyzed by SEM, X-ray diffractometer and microhardness tester. Diffusion coefficient of every element was calculated by using the experimental results. The influence of the interracial diffusion on the microstructure, Vickers hardness and interracial bond strength of the VFS coatings was studied in detail. The experimental results show that there is a metallurgical bond area between the VFS WC-Co coatings and the steel substrate. The VFS coatings are characterized by the gradient hardness of the interface and the high bond strength to the steel substate, both of which are beneficial to the improvement of the wear resistance and corrosion resistance.
文摘A new kind of sintering process, combined sintering process. i.e. vacuum sintering plus hot isolate pressure sintering (HIP), was introduced for producing ultrafine WC-10% Co (mass fraction. so as the follows) cemented carbides. The effects of some processing parameters on the microstructure and mechanical properties of the obtained cemented carbides were studied. The results show that the rapid shrinkage and the pronounced densification of tile cemented carbides took place during the vacuum sintering stage, which is intinaately correlated with the local liquid sintering occurred during this earl} sintering stage for the high surface activity of ultrafine WC-Co powder. The way of high pressure imposing. isothermal treatment cycle during ac.acuum sintering and HIP sintering stage directly influence the densitication of compacts and the mechanical properties of the produced WC-10%Co cemented carbides.
文摘The TBC system is examined with regards to its response to thermal exposure at high temperature. It has been established before that the thermally grown oxide (TGO) layer that forms upon bond coat oxidation is the key factor determining the performance of the TBC system and/or its failure. However, characteristics of TGO growth, bond coat rumpling, principles governing failure of TBC systems and the various failure mechanisms have been studied extensively in case of just super alloy with bond coat or with thick top coating. In this study super alloy/bond coat system with single splats of YSZ instead of thick topcoat is analyzed in order to scrutinize the effect on the first layer of splats during thermal exposure. The splats with microcracks are the building blocks of the top coat. The most important aspect of this layer is the inherent inter-splat and intra-splat porosity which undergoes sintering during thermal exposure. The interactions between the YSZ splats and the evolving TGO is directly linked to the presence or absence of bond coat oxidation. Therefore the high temperature behavior of this system is analyzed with variations in heat treatment involving, temperature, duration and environment of thermal exposure.
文摘The TBC system’s response to thermal exposure at high temperature is discussed here. The relevance of the microstructural aspects of each component of the TBC system is emphasized. The top coat is a YSZ ceramic coating consisting of a collection of splats on top of one another. The most important aspect of this layer is the inherent inter-splat and intra-splat porosity which undergoes sintering during thermal exposure. This study investigates the effect of thermal exposure on the microstructure and sintering behavior in single splats produced using different starting powders since this has been shown to influence the basic microstructure of YSZ topcoat. The bond coat is an MCrAlY metallic coating which serves as an Al reservoir and allows the formation of a protective alumina, Thermally Grown Oxide (TGO) layer between the bond coat (BC) and the top coat (TC) layers. This oxide scale formed upon thermal exposure prevents further oxidation of the underlying component (substrate) and thus provides protection. As such, the content of free Al in the bond coat layer is of significance and makes it crucial to understand the influence of bond coat microstructure evolution and oxidation involved during its formation. The interaction between the bond coat, the TGO and the top coat layers is examined in this study to understand the high temperature behavior of the TBC system with regards to variations in the top coat and bond coat material systems used.
基金The authors would like to thank the National Key R&D Program of China(2017YFB0304000)National Natural Science Foundation of China(51932008,51772277)Central China Thousand Talents Project(2042005100111).
文摘Si2N2O ceramics were prepared using amorphous Si3N4 as the raw material and Li2CO3 as the sintering additive through vacuum multi-stage sintering.The influence of the Li2CO3 addition(0%,1%,2%,3%,and 5%,by mass)on the phase composition,the microstructure,the porosity,the mechanical properties,the dielectric constant and the tangent of the dielectric loss angle of the porous Si2N2O ceramics was investigated.The results reveal that a suitable addition of Li2CO3 can promote the generation of Si2N2O but excessive or inadequate Li2CO3 causes decomposition of Si2N2O ceramics.The prepared porous Si2N2O ceramics have good mechanical properties,good thermal shock resistance,and low dielectric properties,which have excellent potential for application in microwave sintering furnaces.
文摘Regenerative artificial bone material and bone parts were fabricated using vacuum-sintered bodies of a “titanium medical apatite (TMA?)” that is formed by chemically connecting Ti oxide molecules to the reactive [Ca10 (PO4 )6 ] group of hydroxyapatite (HAp). Sintering at temperatures of 1273 - 1773 K caused this TMA sintered bodies to recrystallize and form a varying mix of α-TCP (tricalcium phosphate), β-TCP and Perovskite-CaTiO3 phases. The Perovskite crystals proved to be quite stable and hard, forming a uniform distribution of similarly sized fibers in all directions under vacuum sintering, but an irregular distribution and size when sintered in the presence of oxygen. Complete recrystallization was achieved by vacuum sintering at temperatures in excess of 1473 K. In particular, TMA vacuum-sintered bodies at 1573 K are given the maximum value;a Vickers hardness of 400, a bending strength of 43 MPa, a compressive strength of 270 MPa and a density of approximately 2300 kg/m3 was achieved that closely corresponds to that of compact bone or a tooth. As these TMA bodies could also be cut into various forms, they are considered a promising biomaterial for use as artificial bone in the regeneration of natural bone, or to provide reinforcement of bone junctions in dental and orthopedic surgery.
文摘The content of partially stabilized zirconia has remarkable influence on densification and mechanical properties of Al2O3/PSZ(3Y) ceramic composites. When 15%PSZ(3Y) is added to Al2O3, after vacuum sintering for 2 h at 1 550 ℃, the fracture toughness and bending strength of the Al2O3/PSZ(3Y) ceramic composite reaches 8.2 MPa·m1/2 and 884 MPa, respectively. The effect of the content of PSZ(3Y) on relative density and mechanical properties was investigated. The change of m-ZrO2 and t-ZrO2 phases content before and after fracture was measured by X-ray diffraction quantitative phase analysis. It is confirmed that improvement in bending strength and fracture toughness of the Al2O3/PSZ(3Y) ceramic composite is due to the phase transformation toughening mechanism of PSZ(3Y).