The final thickness of a product after the vacuum infusion process (VIP), which is equal to the fiber volume fraction, depends in part on the compression responses of the preform because one of the mold faces is fle...The final thickness of a product after the vacuum infusion process (VIP), which is equal to the fiber volume fraction, depends in part on the compression responses of the preform because one of the mold faces is flexible in VIE This study aims at investigating the compression responses of different fabrics under dry or wet conditions. The main factors affecting the compression response under investigation include, the vacuum pressure, the loading and unloading repeatability on the preform, the layup design, the kinds of fabrics, and the resin viscosity. Besides, the effects of some internal factors such as nesting and elastic recovery of fibers, lubrication of resin, friction between fibers, and so on, are also studied. In the end, this article expatiates the meaning of the matching requirements of the permeability of the preform and that of the distribution medium.展开更多
The influence of the certain specific vacuum pre-oxidation process on the phase transformation of thermally-grown oxides(TGO) was studied.The CoCrAlY high temperature corrosion resistance coatings were produced onto...The influence of the certain specific vacuum pre-oxidation process on the phase transformation of thermally-grown oxides(TGO) was studied.The CoCrAlY high temperature corrosion resistance coatings were produced onto the nickel-based superalloy substrate by high velocity oxygen fuel(HVOF).It suggests that the TGO usually consists of a great number of chromium oxides,cobalt oxides and spinel oxides besides alumina during the initial period of the high temperature oxidation if the specimens are not subjected to the appropriate vacuum pre-oxidation process.Furthermore,the amount of alumina is strongly dependent on the partial pressure of oxygen;while the CoCr2O4 spinel oxides are usually formed under the conditions of higher partial pressure of oxygen during the initial period and the lower partial pressure of oxygen during the subsequent period of the isothermal oxidation.After the appropriate vacuum pre-oxidation process,the TGO is mainly composed of alumina that contains lower Y element,while alumina that contains higher Y element sporadically distributes,and the spinel oxides cannot be found.After a longer period of the isothermal oxidation,a small amount of porous CoCr2O4 and the chrome oxide sporadically distribute near the continuous alumina.Additionally,after the appropriate vacuum pre-oxidation process,the TGO growth rate is relatively slow.展开更多
A hybrid neural network model,in which RH process(theoretical)model is combined organically with neural network(NN)and case-base reasoning(CBR),was established.The CBR method was used to select the operation mode and ...A hybrid neural network model,in which RH process(theoretical)model is combined organically with neural network(NN)and case-base reasoning(CBR),was established.The CBR method was used to select the operation mode and the RH operational guide parameters for different steel grades according to the initial conditions of molten steel,and a three-layer BP neural network was adopted to deal with nonlinear factors for improving and compensating the limitations of technological model for RH process control and end-point prediction.It was verified that the hybrid neural network is effective for improving the precision and calculation efficiency of the model.展开更多
In order to get a better understanding of the vacuum consumable arc remelting(VAR) processes and thus to optimize them,a 3D finite element model was developed for the temperature fields and heat transfer of titanium a...In order to get a better understanding of the vacuum consumable arc remelting(VAR) processes and thus to optimize them,a 3D finite element model was developed for the temperature fields and heat transfer of titanium alloy ingots during VAR process.The results show that the temperature fields obtained by the simulation are well validated through the experiment results.The temperature distribution is different during the whole VAR process and the steady-state molten pool forms at 329 s for d100 mm × 180 mm ingots.At the initial stage of remelting,the heat dissipation of crucible bottom plays an important role in the whole heat dissipation system.At the middle of remelting,the crucible wall becomes a major heat dissipation way.The effect of cooling velocity on the solidification structure of ingots was investigated based on the temperature fields and the results can well explain the macrostructure of titanium alloy ingots.展开更多
With the fast development of the application of magnesium based alloys,the demand for primary magnesium is increasing dramatically all over the world.The Pidgeon process is the most widely used process for producing m...With the fast development of the application of magnesium based alloys,the demand for primary magnesium is increasing dramatically all over the world.The Pidgeon process is the most widely used process for producing magnesium in China,but suffers from problems such as high energy,resource consumption and environmental pollution.While the process of vacuum carbothermal reduction to produce magnesium(VCTRM)has attracted more and more attention as its advantages,but it has not been well-practiced in industrial applications and there also is no comprehensive and quantitative analysis of this process.This study quantified the flows of resource and energy for the Pidgeon process and the VCTRM process,then compared and analyzed these two processes with each other from three aspects.The VCTRM process results in 63.14%and 69.16%lower of non-renewable mineral resources and energy consumptions when compared to the Pidgeon process,respectively.Moreover,the low energy consumption(2.675 tce vs.8.681 tce)and material to magnesium ratio(2.953:1 vs.6.429:1)of the VCTRM process,which lead to lower greenhouse gas(GHG)emissions(8.777 t vs.26.337 t)and solid waste generation(0.522 t vs.5.465 t)with a decrease of 66.67%and 90.45%,respectively.Results indicate that the VCTRM process is a more environmentally friendly process for magnesium production with high efficiency but low cost and low pollution,and it shows a good potential to be industrialized in the future after solving the bottleneck problem of the reverse reaction.展开更多
The objective of this paper is to understand the flow mechanism through visualization experiments and discuss theinfluence of process parameters on mold filling process. A 2D leakage flow model is developed to simulat...The objective of this paper is to understand the flow mechanism through visualization experiments and discuss theinfluence of process parameters on mold filling process. A 2D leakage flow model is developed to simulate the moldingprocess, and the simulation results show good agreement with experiments.展开更多
Dividing-wall columns(DWCs)are widely used in the separation of ternary mixtures,but rarely seen in the separation of petroleum fractions.This work develops two novel and energy-efficient designs of lubricant-type vac...Dividing-wall columns(DWCs)are widely used in the separation of ternary mixtures,but rarely seen in the separation of petroleum fractions.This work develops two novel and energy-efficient designs of lubricant-type vacuum distillation process(LVDP)for the separation of hydroisomerization fractions(HIF)of a hydrocracking tail oil(HTO).First,the HTO hydroisomerization reaction is investigated in an experimental fixed-bed reactor to achieve the optimum liquid HIF by analyzing the impact of the operating conditions.A LVDP used for HIF separation is proposed and optimized.Subsequently,two thermal coupling intensified technologies,including side-stream(SC)and dividing-wall column(DWC),are combined with the LVDP to develop side-stream vacuum distillation process(SC-LVDP)and dividing-wall column vacuum distillation process(DWC-LVDP).The performance of LVDP,SC-LVDP,and DWC-LVDP are evaluated in terms of energy consumption,capital cost,total annual cost,product yields,and stripping steam consumption.The results demonstrates that the intensified processes,SC-LVDP and DWC-LVDP significantly decreases the energy consumption and capital cost compared with LVDP.DWC-LVDP further decreases in capital cost due to the removal of the side stripper and narrows the overlap between the third lube oils and fourth lube oils.This study attempts to combine DWC structure into the separation of petroleum fractions,and the proposed approach and the results presented provide an incentive for the industrial implementation of high-quality utilization of HTO through intensified LVDP.展开更多
The visualization experiments were carried out to investigate the permeability of the high permeable medium (HPM) and the roles of the peel ply and the HPM in the mold filling.The influence of process parameters on m...The visualization experiments were carried out to investigate the permeability of the high permeable medium (HPM) and the roles of the peel ply and the HPM in the mold filling.The influence of process parameters on mold filling is discussed.Furthermore,the whole vacuum infusion molding process (VIMP) procedure is introduced in detail taking the manufacture of a model boat for example.展开更多
The optimal parameters for flow grooves and supply grooves were determined by a series of experiments,and the influences of various molding conditions on the mold filling process were analyzed.Furthermore,the whole VI...The optimal parameters for flow grooves and supply grooves were determined by a series of experiments,and the influences of various molding conditions on the mold filling process were analyzed.Furthermore,the whole VIMP procedure based on grooves was introduced in detail taking the manufacture of a sandwich panel as an example.展开更多
A 2D axisymmetric numerical model was established to investigate the variations of molten pool with different melt rates during the vacuum arc remelting of 8Cr4Mo4V high-strength steel,and the ingot growth was simulat...A 2D axisymmetric numerical model was established to investigate the variations of molten pool with different melt rates during the vacuum arc remelting of 8Cr4Mo4V high-strength steel,and the ingot growth was simulated by dynamic mesh techniques.The results show that as the ingot grows,the molten pool profile changes from shallow and flat to V-shaped,and both the molten pool depth and the mushy width increase.Meanwhile,the variation of both the molten pool shape and the mushy width melt rate is clarified by the thermal equilibrium analysis.As melt rate increases,both the molten pool depth and the mushy width increase.It is caused by the increment in sensible heat stored in the ingot due to the limitation of the cooling capacity of the mold.The nonlinear increment in sensible heat leads to a nonlinear increase in the mushy width.In addition,as melt rate increases,the local solidification time(LST)of ingot decreases obviously at first and then increases.When melt rate is controlled in a suitable range,LST is the lowest and the secondary dendrite arm spacing of the ingot is the smallest,which can effectively improve the compactness degree of 8Cr4Mo4V high-strength steel.展开更多
We argue that genuine biological autonomy, or described at human level as free will, requires taking into account quantum vacuum processes in the context of biological teleology. One faces at least three basic problem...We argue that genuine biological autonomy, or described at human level as free will, requires taking into account quantum vacuum processes in the context of biological teleology. One faces at least three basic problems of genuine biological autonomy: (1) if biological autonomy is not physical, where does it come from? (2) Is there a room for biological causes? And (3) how to obtain a workable model of biological teleology? It is shown here that the solution of all these three problems is related to the quantum vacuum. We present a short review of how this basic aspect of the fundamentals of quantum theory, although it had not been addressed for nearly 100 years, actually it was suggested by Bohr, Heisenberg, and others. Realizing that the quantum mechanical measurement problem associated with the "collapse" of the wave function is related, in the Copenhagen Interpretation of quantum mechanics, to a process between self-consciousness and the external physical environment, we are extending the issue for an explanation of the different processes occurring between living organisms and their internal environment. Definitions of genuine biological autonomy, biological aim, and biological spontaneity are presented. We propose to improve the popular two-stage model of decisions with a biological model suitable to obtain a deeper look at the nature of the mind-body problem. In the newly emerging picture biological autonomy emerges as a new, fundamental and inevitable element of the scientific worldview.展开更多
Perovskite solar cells(PSCs)have attracted significant research interest due to the rapid rise in efficiency.However,a large efficiency gap still exists between laboratory-based small devices and industrialoriented la...Perovskite solar cells(PSCs)have attracted significant research interest due to the rapid rise in efficiency.However,a large efficiency gap still exists between laboratory-based small devices and industrialoriented large-scale modules.One of the main reasons for the efficiency losses is the degraded quality and morphology of the deposited large-area films,which is closely associated with crystallization processes.In this review,we discuss the nucleation and crystallization processes in solution and vaporbased up-scaling deposition methods for large-area perovskite films.We review recent scientific achievements and technical developments that have been made in the field of large-area cells.We present the existing problems that limit the performance of large devices and extensively discuss the key influencing parameters from the perspective of nucleation and crystallization over large areas.This review highlights the importance of crystallization control in up-scaling fabrications and presents promising strategies towards large-area perovskite-based optoelectronic devices.展开更多
The chemorheological behaviors of a low viscosity epoxy resin system (Huntsman 1564/3486) for vacuum infusion moulding process (VIMP) were studied with viscosity experiments.The dual-Arrhenius rheological model an...The chemorheological behaviors of a low viscosity epoxy resin system (Huntsman 1564/3486) for vacuum infusion moulding process (VIMP) were studied with viscosity experiments.The dual-Arrhenius rheological model and the engineering viscosity model were established and compared with the experimental data.The result showed that the viscosity in the earlier stage calculated by dual-Arrhenius model were smaller than the experimental data,while the data calculated by the engineering model were larger.Combining the two models together can predict the rheological behaviors of the resin system in a more credible manner.The processing windows of the resin system for VIMP were determined based on the two models.The optimum processing temperature is 30-45 ℃.展开更多
A water model and a high-speed video camera were utilized in the 300-t RH equipment to study the effect of steel flow patterns in a vacuum chamber on fast decarburization and a superior flow-pattern map was obtained d...A water model and a high-speed video camera were utilized in the 300-t RH equipment to study the effect of steel flow patterns in a vacuum chamber on fast decarburization and a superior flow-pattern map was obtained during the practical RH process. There are three flow patterns with different bubbling characteristics and steel surface states in the vacuum chamber: boiling pattern(BP), transition pattern(TP), and wave pattern(WP). The effect of the liquid-steel level and the residence time of the steel in the chamber on flow patterns and decarburization reaction were investigated, respectively. The liquid-steel level significantly affected the flow-pattern transition from BP to WP, and the residence time and reaction area were crucial to evaluate the whole decarburization process rather than the circulation flow rate and mixing time. A superior flow-pattern map during the practical RH process showed that the steel flow pattern changed from BP to TP quickly, and then remained as TP until the end of decarburization.展开更多
Shortcomings of the Boltzmann physical kinetics are considered. Boltzmann equation is only plausible equation. The cosequences originated from this fact are considered in the different fields of theoretical physics fr...Shortcomings of the Boltzmann physical kinetics are considered. Boltzmann equation is only plausible equation. The cosequences originated from this fact are considered in the different fields of theoretical physics from the point of view of nonlocal physics. Namely: main principles of nonlocal physics;generalized hydrodynamic equations;magnetic field evolution in the superconductor of the second type;Hubble expansion;special theory of relativity;the problem of the interaction of matter (M) with physical vacuum (PV) is considered including the PV—M energy exchange. Application nonlocal physics to the problem of the dark matter existence—dark matter does not exist, analytical investigation.展开更多
Selecting H-60 PVC foam, four-axis E-glass non-woven fabric and vinyl resin, a type of innovative reinforced sandwich composite as grooved perforation sandwich (GPS) were fabricated by VIMP. The interfacial structur...Selecting H-60 PVC foam, four-axis E-glass non-woven fabric and vinyl resin, a type of innovative reinforced sandwich composite as grooved perforation sandwich (GPS) were fabricated by VIMP. The interfacial structure between the face and core of the sandwich is innovative because of the acuminate grooves in both sides of foam core and the holes perforated along core’s height. The fabrication results show that VIMP is a high-speed and cost-effective manufacturing method. The mechanical properties of the reinforced foam core were tested. The typical flexural failure modes of sandwich specimens were observed. The flexural stiffness and ultimate bearing capacity of sandwich were studied by ordinary sandwich beam theory and finite element method.展开更多
Evolution of the photon gas (PG) in the Planck period is considered as a particular case of the physical vacuum (PV) hydrodynamics. Nonlocal quantum hydrodynamic equations are applied for calculation of the photon gas...Evolution of the photon gas (PG) in the Planck period is considered as a particular case of the physical vacuum (PV) hydrodynamics. Nonlocal quantum hydrodynamic equations are applied for calculation of the photon gas evolution. In general case, PG hydrodynamics contains gravitation in the explicit form. Exact analytical solutions of PG hydrodynamics are obtained. Solutions show the exponential growth of gradient values for internal energy in time and space. In comparison with phenomenological General Relativistic Theory, Nonlocal quantum hydrodynamics (NQH) does not lead to contradictions in all limit cases. Theory of physical vacuum and the theory of photonic gas are related theories. These theoretical (analytical!) results confirm the result of direct observations (Arno Alan Penzias and Robert Woodrow Wilson, Nobel Prize (1978) for their discovery of cosmic microwave background;John C. Mather and George F. Smoot. Nobel Prize (2006) for their discovery of the blackbody form and anisotropy of the cosmic microwave background radiation).展开更多
The performance of vacuum arc remelting (VAR) ingot depends largely on ingot structure and chemical uniformity,which are strongly influenced by molten pool profile that is influenced by VAR process.To better understan...The performance of vacuum arc remelting (VAR) ingot depends largely on ingot structure and chemical uniformity,which are strongly influenced by molten pool profile that is influenced by VAR process.To better understand the effect of remelting current on molten pool profile of titanium alloy ingot during VAR process,a 3D finite element model is developed by the ANSYS software.The results show that there are three remelting stages during VAR process when the remelting current is 2.0 kA.The molten pool depth increases gradually from 30 to 320 s,then the change of molten pool depth is very small during the steady state stage from 320 to 386 s,and lastly the molten pool depth becomes shallow after 386 s.The melting rate and temperature of superheat increase with the remelting current increasing,which leads to the augment of molten pool volume.In the end,the total remelting time and steady state molten pool time decrease with the melting current from 1.6 to 2.8 kA.展开更多
The objective of this research was to develop a novel self-lubricating coating on an AA6061 aluminum alloy.Three coatings were prepared by the plasma electrolytic oxidation(PEO) process using 50-, 500-, and 1000-Hz ...The objective of this research was to develop a novel self-lubricating coating on an AA6061 aluminum alloy.Three coatings were prepared by the plasma electrolytic oxidation(PEO) process using 50-, 500-, and 1000-Hz pulsed direct current, respectively. The as-deposited coatings were then post-treated using two different methods, viz., ultrasonic vibration-aided vacuum oil impregnation(UVOI) and oil impregnation under ambient pressure(OIAP). After posttreatment, an oil-containing, self-lubricating top layer was formed on the coatings. The effects of the coatings' surface morphologies and structures on their oil-holding capabilities were discussed. The results revealed that coatings prepared with higher frequency had a greater oil-holding capacity using OIAP post-treatment, while those prepared with lower frequency had a greater oil-containing capability using UVOI post-treatment. These phenomena are related to the morphologies of the coatings produced with various current modes. The tribological properties of the coatings before and after post-treatments were investigated by pin-on-disc sliding wear tests. Due to the formation of a lubricant-containing top layer, the post-treatment coatings had a lower friction coefficient and improved wear resistance compared with the asdeposited coatings. In addition, the coatings after UVOI treatment had better wear performance than those post-treated using the OIAP process. Among all coatings, the coating produced with a 50-Hz pulsed current followed by UVOI posttreatment achieved the lowest friction coefficient(0.03) and best wear resistance when sliding against a Si3N4 ceramic counterface. This study indicates that a novel self-lubricating coating can be prepared by a PEO process combined with vacuum oil impregnation post-treatment.展开更多
Vacuum-assisted spin-coating is an effective polymer filling technology for sidewall insulating of through-silicon-via(TSV).This paper investigated the flow mechanism of the vacuum-assisted polymer filling process bas...Vacuum-assisted spin-coating is an effective polymer filling technology for sidewall insulating of through-silicon-via(TSV).This paper investigated the flow mechanism of the vacuum-assisted polymer filling process based on experiments and numerical simulation,and studied the effect of vacuum pressure,viscosity of polymer and aspect-ratio of trench on the filling performance.A 2D axisymmetric model,consisting of polymer partially filled into the trench and void at the bottom of trench,was developed for the computational fluid dynamics(CFD)simulation.The simulation results indicate that the vacuum-assisted polymer filling process goes through four stages,including bubble formation,bubble burst,air elimination and polymer re-filling.Moreover,the simulation results suggest that the pressure significantly affects the bubble formation and the polymer re-filling procedure,and the polymer viscosity and the trench aspect-ratio influence the duration of air elimination.展开更多
文摘The final thickness of a product after the vacuum infusion process (VIP), which is equal to the fiber volume fraction, depends in part on the compression responses of the preform because one of the mold faces is flexible in VIE This study aims at investigating the compression responses of different fabrics under dry or wet conditions. The main factors affecting the compression response under investigation include, the vacuum pressure, the loading and unloading repeatability on the preform, the layup design, the kinds of fabrics, and the resin viscosity. Besides, the effects of some internal factors such as nesting and elastic recovery of fibers, lubrication of resin, friction between fibers, and so on, are also studied. In the end, this article expatiates the meaning of the matching requirements of the permeability of the preform and that of the distribution medium.
基金Project supported the by State Key Laboratory of Internal Combustion Engines of Tianjin University,ChinaProject(51507077)supported by the National Natural Science Foundation of China+1 种基金Project(15KJB470005)supported by the Natural Science Research of Higher Education Institutions of Jiangsu Province,ChinaProjects(YKJ201308,QKJB201401)supported by Nanjing Institute of Technology,China
文摘The influence of the certain specific vacuum pre-oxidation process on the phase transformation of thermally-grown oxides(TGO) was studied.The CoCrAlY high temperature corrosion resistance coatings were produced onto the nickel-based superalloy substrate by high velocity oxygen fuel(HVOF).It suggests that the TGO usually consists of a great number of chromium oxides,cobalt oxides and spinel oxides besides alumina during the initial period of the high temperature oxidation if the specimens are not subjected to the appropriate vacuum pre-oxidation process.Furthermore,the amount of alumina is strongly dependent on the partial pressure of oxygen;while the CoCr2O4 spinel oxides are usually formed under the conditions of higher partial pressure of oxygen during the initial period and the lower partial pressure of oxygen during the subsequent period of the isothermal oxidation.After the appropriate vacuum pre-oxidation process,the TGO is mainly composed of alumina that contains lower Y element,while alumina that contains higher Y element sporadically distributes,and the spinel oxides cannot be found.After a longer period of the isothermal oxidation,a small amount of porous CoCr2O4 and the chrome oxide sporadically distribute near the continuous alumina.Additionally,after the appropriate vacuum pre-oxidation process,the TGO growth rate is relatively slow.
基金Item Sponsored by National Natural Science Foundation of China(50074026)
文摘A hybrid neural network model,in which RH process(theoretical)model is combined organically with neural network(NN)and case-base reasoning(CBR),was established.The CBR method was used to select the operation mode and the RH operational guide parameters for different steel grades according to the initial conditions of molten steel,and a three-layer BP neural network was adopted to deal with nonlinear factors for improving and compensating the limitations of technological model for RH process control and end-point prediction.It was verified that the hybrid neural network is effective for improving the precision and calculation efficiency of the model.
基金Project(2007CB613802) supported by the National Basic Research Program of China
文摘In order to get a better understanding of the vacuum consumable arc remelting(VAR) processes and thus to optimize them,a 3D finite element model was developed for the temperature fields and heat transfer of titanium alloy ingots during VAR process.The results show that the temperature fields obtained by the simulation are well validated through the experiment results.The temperature distribution is different during the whole VAR process and the steady-state molten pool forms at 329 s for d100 mm × 180 mm ingots.At the initial stage of remelting,the heat dissipation of crucible bottom plays an important role in the whole heat dissipation system.At the middle of remelting,the crucible wall becomes a major heat dissipation way.The effect of cooling velocity on the solidification structure of ingots was investigated based on the temperature fields and the results can well explain the macrostructure of titanium alloy ingots.
基金the Yunnan Ten Thousand Talents Plan Industrial Technology Champion Project Foundation of China(No.YNWR-CYJS-2018-015)Basic Research Project of Yunnan Province(No.2019FB080).
文摘With the fast development of the application of magnesium based alloys,the demand for primary magnesium is increasing dramatically all over the world.The Pidgeon process is the most widely used process for producing magnesium in China,but suffers from problems such as high energy,resource consumption and environmental pollution.While the process of vacuum carbothermal reduction to produce magnesium(VCTRM)has attracted more and more attention as its advantages,but it has not been well-practiced in industrial applications and there also is no comprehensive and quantitative analysis of this process.This study quantified the flows of resource and energy for the Pidgeon process and the VCTRM process,then compared and analyzed these two processes with each other from three aspects.The VCTRM process results in 63.14%and 69.16%lower of non-renewable mineral resources and energy consumptions when compared to the Pidgeon process,respectively.Moreover,the low energy consumption(2.675 tce vs.8.681 tce)and material to magnesium ratio(2.953:1 vs.6.429:1)of the VCTRM process,which lead to lower greenhouse gas(GHG)emissions(8.777 t vs.26.337 t)and solid waste generation(0.522 t vs.5.465 t)with a decrease of 66.67%and 90.45%,respectively.Results indicate that the VCTRM process is a more environmentally friendly process for magnesium production with high efficiency but low cost and low pollution,and it shows a good potential to be industrialized in the future after solving the bottleneck problem of the reverse reaction.
文摘The objective of this paper is to understand the flow mechanism through visualization experiments and discuss theinfluence of process parameters on mold filling process. A 2D leakage flow model is developed to simulate the moldingprocess, and the simulation results show good agreement with experiments.
基金funded by Shanghai Sailing Program (No.19YF1410800)National Natural Science Foundation of China(No. 21908056)。
文摘Dividing-wall columns(DWCs)are widely used in the separation of ternary mixtures,but rarely seen in the separation of petroleum fractions.This work develops two novel and energy-efficient designs of lubricant-type vacuum distillation process(LVDP)for the separation of hydroisomerization fractions(HIF)of a hydrocracking tail oil(HTO).First,the HTO hydroisomerization reaction is investigated in an experimental fixed-bed reactor to achieve the optimum liquid HIF by analyzing the impact of the operating conditions.A LVDP used for HIF separation is proposed and optimized.Subsequently,two thermal coupling intensified technologies,including side-stream(SC)and dividing-wall column(DWC),are combined with the LVDP to develop side-stream vacuum distillation process(SC-LVDP)and dividing-wall column vacuum distillation process(DWC-LVDP).The performance of LVDP,SC-LVDP,and DWC-LVDP are evaluated in terms of energy consumption,capital cost,total annual cost,product yields,and stripping steam consumption.The results demonstrates that the intensified processes,SC-LVDP and DWC-LVDP significantly decreases the energy consumption and capital cost compared with LVDP.DWC-LVDP further decreases in capital cost due to the removal of the side stripper and narrows the overlap between the third lube oils and fourth lube oils.This study attempts to combine DWC structure into the separation of petroleum fractions,and the proposed approach and the results presented provide an incentive for the industrial implementation of high-quality utilization of HTO through intensified LVDP.
文摘The visualization experiments were carried out to investigate the permeability of the high permeable medium (HPM) and the roles of the peel ply and the HPM in the mold filling.The influence of process parameters on mold filling is discussed.Furthermore,the whole vacuum infusion molding process (VIMP) procedure is introduced in detail taking the manufacture of a model boat for example.
文摘The optimal parameters for flow grooves and supply grooves were determined by a series of experiments,and the influences of various molding conditions on the mold filling process were analyzed.Furthermore,the whole VIMP procedure based on grooves was introduced in detail taking the manufacture of a sandwich panel as an example.
基金financially supported by National Natural Science Foundation of China(Nos.U1908223 and U1960203)Fundamental Research Funds for the Central Universities(Grant No.N2125017)Talent Project of Revitalizing Liaoning(Grant No.XLYC1902046).
文摘A 2D axisymmetric numerical model was established to investigate the variations of molten pool with different melt rates during the vacuum arc remelting of 8Cr4Mo4V high-strength steel,and the ingot growth was simulated by dynamic mesh techniques.The results show that as the ingot grows,the molten pool profile changes from shallow and flat to V-shaped,and both the molten pool depth and the mushy width increase.Meanwhile,the variation of both the molten pool shape and the mushy width melt rate is clarified by the thermal equilibrium analysis.As melt rate increases,both the molten pool depth and the mushy width increase.It is caused by the increment in sensible heat stored in the ingot due to the limitation of the cooling capacity of the mold.The nonlinear increment in sensible heat leads to a nonlinear increase in the mushy width.In addition,as melt rate increases,the local solidification time(LST)of ingot decreases obviously at first and then increases.When melt rate is controlled in a suitable range,LST is the lowest and the secondary dendrite arm spacing of the ingot is the smallest,which can effectively improve the compactness degree of 8Cr4Mo4V high-strength steel.
文摘We argue that genuine biological autonomy, or described at human level as free will, requires taking into account quantum vacuum processes in the context of biological teleology. One faces at least three basic problems of genuine biological autonomy: (1) if biological autonomy is not physical, where does it come from? (2) Is there a room for biological causes? And (3) how to obtain a workable model of biological teleology? It is shown here that the solution of all these three problems is related to the quantum vacuum. We present a short review of how this basic aspect of the fundamentals of quantum theory, although it had not been addressed for nearly 100 years, actually it was suggested by Bohr, Heisenberg, and others. Realizing that the quantum mechanical measurement problem associated with the "collapse" of the wave function is related, in the Copenhagen Interpretation of quantum mechanics, to a process between self-consciousness and the external physical environment, we are extending the issue for an explanation of the different processes occurring between living organisms and their internal environment. Definitions of genuine biological autonomy, biological aim, and biological spontaneity are presented. We propose to improve the popular two-stage model of decisions with a biological model suitable to obtain a deeper look at the nature of the mind-body problem. In the newly emerging picture biological autonomy emerges as a new, fundamental and inevitable element of the scientific worldview.
文摘Perovskite solar cells(PSCs)have attracted significant research interest due to the rapid rise in efficiency.However,a large efficiency gap still exists between laboratory-based small devices and industrialoriented large-scale modules.One of the main reasons for the efficiency losses is the degraded quality and morphology of the deposited large-area films,which is closely associated with crystallization processes.In this review,we discuss the nucleation and crystallization processes in solution and vaporbased up-scaling deposition methods for large-area perovskite films.We review recent scientific achievements and technical developments that have been made in the field of large-area cells.We present the existing problems that limit the performance of large devices and extensively discuss the key influencing parameters from the perspective of nucleation and crystallization over large areas.This review highlights the importance of crystallization control in up-scaling fabrications and presents promising strategies towards large-area perovskite-based optoelectronic devices.
基金Supported by the 863 National Project of China (No.2007AA03Z563)the Specialized Project of the HUNAN Province of China(No.2006GK1002)
文摘The chemorheological behaviors of a low viscosity epoxy resin system (Huntsman 1564/3486) for vacuum infusion moulding process (VIMP) were studied with viscosity experiments.The dual-Arrhenius rheological model and the engineering viscosity model were established and compared with the experimental data.The result showed that the viscosity in the earlier stage calculated by dual-Arrhenius model were smaller than the experimental data,while the data calculated by the engineering model were larger.Combining the two models together can predict the rheological behaviors of the resin system in a more credible manner.The processing windows of the resin system for VIMP were determined based on the two models.The optimum processing temperature is 30-45 ℃.
基金financially supported by the National Natural Science Foundation of China (No.51704203)the PhD Early Development Program of Taiyuan University of Science and Technology (Nos. 20152008, 20152013, and 20152018)+2 种基金Shanxi Province Science Foundation for Youths (No. 201601D202027)Key Project of Research and Development Plan of Shanxi Province (Nos. 201603D111004 and 201603D121010)NSFC-Shanxi Coal Based Low Carbon Joint Fund (No. U1510131)
文摘A water model and a high-speed video camera were utilized in the 300-t RH equipment to study the effect of steel flow patterns in a vacuum chamber on fast decarburization and a superior flow-pattern map was obtained during the practical RH process. There are three flow patterns with different bubbling characteristics and steel surface states in the vacuum chamber: boiling pattern(BP), transition pattern(TP), and wave pattern(WP). The effect of the liquid-steel level and the residence time of the steel in the chamber on flow patterns and decarburization reaction were investigated, respectively. The liquid-steel level significantly affected the flow-pattern transition from BP to WP, and the residence time and reaction area were crucial to evaluate the whole decarburization process rather than the circulation flow rate and mixing time. A superior flow-pattern map during the practical RH process showed that the steel flow pattern changed from BP to TP quickly, and then remained as TP until the end of decarburization.
文摘Shortcomings of the Boltzmann physical kinetics are considered. Boltzmann equation is only plausible equation. The cosequences originated from this fact are considered in the different fields of theoretical physics from the point of view of nonlocal physics. Namely: main principles of nonlocal physics;generalized hydrodynamic equations;magnetic field evolution in the superconductor of the second type;Hubble expansion;special theory of relativity;the problem of the interaction of matter (M) with physical vacuum (PV) is considered including the PV—M energy exchange. Application nonlocal physics to the problem of the dark matter existence—dark matter does not exist, analytical investigation.
基金Funded by the Special Prophase Project on Basic Research of The Na-tional Department of Scientific and Technology(No. 2008CB617613)the National Natural Science Foundation of China (No. 50978134)the Research Award Fund for Young Teachers of Nanjing University of Technology
文摘Selecting H-60 PVC foam, four-axis E-glass non-woven fabric and vinyl resin, a type of innovative reinforced sandwich composite as grooved perforation sandwich (GPS) were fabricated by VIMP. The interfacial structure between the face and core of the sandwich is innovative because of the acuminate grooves in both sides of foam core and the holes perforated along core’s height. The fabrication results show that VIMP is a high-speed and cost-effective manufacturing method. The mechanical properties of the reinforced foam core were tested. The typical flexural failure modes of sandwich specimens were observed. The flexural stiffness and ultimate bearing capacity of sandwich were studied by ordinary sandwich beam theory and finite element method.
文摘Evolution of the photon gas (PG) in the Planck period is considered as a particular case of the physical vacuum (PV) hydrodynamics. Nonlocal quantum hydrodynamic equations are applied for calculation of the photon gas evolution. In general case, PG hydrodynamics contains gravitation in the explicit form. Exact analytical solutions of PG hydrodynamics are obtained. Solutions show the exponential growth of gradient values for internal energy in time and space. In comparison with phenomenological General Relativistic Theory, Nonlocal quantum hydrodynamics (NQH) does not lead to contradictions in all limit cases. Theory of physical vacuum and the theory of photonic gas are related theories. These theoretical (analytical!) results confirm the result of direct observations (Arno Alan Penzias and Robert Woodrow Wilson, Nobel Prize (1978) for their discovery of cosmic microwave background;John C. Mather and George F. Smoot. Nobel Prize (2006) for their discovery of the blackbody form and anisotropy of the cosmic microwave background radiation).
基金the National Basic Research Program(973) of China (No.2007CB613802)
文摘The performance of vacuum arc remelting (VAR) ingot depends largely on ingot structure and chemical uniformity,which are strongly influenced by molten pool profile that is influenced by VAR process.To better understand the effect of remelting current on molten pool profile of titanium alloy ingot during VAR process,a 3D finite element model is developed by the ANSYS software.The results show that there are three remelting stages during VAR process when the remelting current is 2.0 kA.The molten pool depth increases gradually from 30 to 320 s,then the change of molten pool depth is very small during the steady state stage from 320 to 386 s,and lastly the molten pool depth becomes shallow after 386 s.The melting rate and temperature of superheat increase with the remelting current increasing,which leads to the augment of molten pool volume.In the end,the total remelting time and steady state molten pool time decrease with the melting current from 1.6 to 2.8 kA.
基金financially supported by the National Natural Science Foundation of China (No. 51301153)the National Undergraduate Training Programs for Innovation and Entrepreneurship of China (201410345022)
文摘The objective of this research was to develop a novel self-lubricating coating on an AA6061 aluminum alloy.Three coatings were prepared by the plasma electrolytic oxidation(PEO) process using 50-, 500-, and 1000-Hz pulsed direct current, respectively. The as-deposited coatings were then post-treated using two different methods, viz., ultrasonic vibration-aided vacuum oil impregnation(UVOI) and oil impregnation under ambient pressure(OIAP). After posttreatment, an oil-containing, self-lubricating top layer was formed on the coatings. The effects of the coatings' surface morphologies and structures on their oil-holding capabilities were discussed. The results revealed that coatings prepared with higher frequency had a greater oil-holding capacity using OIAP post-treatment, while those prepared with lower frequency had a greater oil-containing capability using UVOI post-treatment. These phenomena are related to the morphologies of the coatings produced with various current modes. The tribological properties of the coatings before and after post-treatments were investigated by pin-on-disc sliding wear tests. Due to the formation of a lubricant-containing top layer, the post-treatment coatings had a lower friction coefficient and improved wear resistance compared with the asdeposited coatings. In addition, the coatings after UVOI treatment had better wear performance than those post-treated using the OIAP process. Among all coatings, the coating produced with a 50-Hz pulsed current followed by UVOI posttreatment achieved the lowest friction coefficient(0.03) and best wear resistance when sliding against a Si3N4 ceramic counterface. This study indicates that a novel self-lubricating coating can be prepared by a PEO process combined with vacuum oil impregnation post-treatment.
文摘Vacuum-assisted spin-coating is an effective polymer filling technology for sidewall insulating of through-silicon-via(TSV).This paper investigated the flow mechanism of the vacuum-assisted polymer filling process based on experiments and numerical simulation,and studied the effect of vacuum pressure,viscosity of polymer and aspect-ratio of trench on the filling performance.A 2D axisymmetric model,consisting of polymer partially filled into the trench and void at the bottom of trench,was developed for the computational fluid dynamics(CFD)simulation.The simulation results indicate that the vacuum-assisted polymer filling process goes through four stages,including bubble formation,bubble burst,air elimination and polymer re-filling.Moreover,the simulation results suggest that the pressure significantly affects the bubble formation and the polymer re-filling procedure,and the polymer viscosity and the trench aspect-ratio influence the duration of air elimination.