Positron lifetime measurements have been performed in binary Fe3Al and Fe3Al doping with Nb or Si alloys. The densities of valence electrons of the bulk and microdefects in all tested samples have been calculated by u...Positron lifetime measurements have been performed in binary Fe3Al and Fe3Al doping with Nb or Si alloys. The densities of valence electrons of the bulk and microdefects in all tested samples have been calculated by using the positron lifetime parameters. Density of valence electron is low in the bulk of Fe3Al alloy. It indicates that, the 3d electrons in a Fe atom have strong-localized properties and tend to form covalent bonds with Al atoms, and the bonding nature in Fe3Al is a mixture of metallic and covalent bonds. The density of valence electron is very low in the defects of Fe3Al grain boundary, which makes the bonding cohesion in grain boundary quite weak. The addition of Si to Fe3Al gives rise to the decrease of the densities of valence electrons in the bulk and the grain boundary thus the metallic bonding cohesion. This makes the alloy more brittle. The addition of Nb to Fe3Al results in the decrease of the ordering energy of the alloy and increases the density of valence electron and the bonding cohesion of the grain boundary. However, since the radius of Nb atom is larger than that of Fe atom, when Nb atoms substitute for Fe atoms, they will distort the lattice and enlarge the volume of the lattice, which decreases the density of valence electron and the cohesion of metallic bond in the bulk of the alloy.展开更多
The structure-property relationship,one of the central themes in materials science,is far from being well understood for metallic glasses(MGs)due to the great complexity of their amorphous structures.Based on the anal...The structure-property relationship,one of the central themes in materials science,is far from being well understood for metallic glasses(MGs)due to the great complexity of their amorphous structures.Based on the analysis of published experimental data for 165 MGs from more than 15 different alloy systems,the present study reveals a universal dependence of mechanical properties(Young’s moduli,shear moduli and yield strength)on simple structural parameters(the inter-atomic distance and/or valence electron density)originating from the interatomic potential and Fermi sphere-Brillouin zone interaction.This work establishes a structure-property relationship for metallic glasses and provides insights into the fundamentals of the mechanical properties of disordered systems.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 59561001)the Foundation of Guangxi Education Committee
文摘Positron lifetime measurements have been performed in binary Fe3Al and Fe3Al doping with Nb or Si alloys. The densities of valence electrons of the bulk and microdefects in all tested samples have been calculated by using the positron lifetime parameters. Density of valence electron is low in the bulk of Fe3Al alloy. It indicates that, the 3d electrons in a Fe atom have strong-localized properties and tend to form covalent bonds with Al atoms, and the bonding nature in Fe3Al is a mixture of metallic and covalent bonds. The density of valence electron is very low in the defects of Fe3Al grain boundary, which makes the bonding cohesion in grain boundary quite weak. The addition of Si to Fe3Al gives rise to the decrease of the densities of valence electrons in the bulk and the grain boundary thus the metallic bonding cohesion. This makes the alloy more brittle. The addition of Nb to Fe3Al results in the decrease of the ordering energy of the alloy and increases the density of valence electron and the bonding cohesion of the grain boundary. However, since the radius of Nb atom is larger than that of Fe atom, when Nb atoms substitute for Fe atoms, they will distort the lattice and enlarge the volume of the lattice, which decreases the density of valence electron and the cohesion of metallic bond in the bulk of the alloy.
基金This work was supported financially by the National Natural Science Foundation of China(Nos.51871237 and 51631003)the Xuzhou Key Research&Development Program(No.KC17015)provided through the European Research Council under the Advanced Grant“INTELHYB–Next Generation of Complex Metallic Materials in Intelligent Hybrid Structures”(No.ERC-2013-ADG-340025)。
文摘The structure-property relationship,one of the central themes in materials science,is far from being well understood for metallic glasses(MGs)due to the great complexity of their amorphous structures.Based on the analysis of published experimental data for 165 MGs from more than 15 different alloy systems,the present study reveals a universal dependence of mechanical properties(Young’s moduli,shear moduli and yield strength)on simple structural parameters(the inter-atomic distance and/or valence electron density)originating from the interatomic potential and Fermi sphere-Brillouin zone interaction.This work establishes a structure-property relationship for metallic glasses and provides insights into the fundamentals of the mechanical properties of disordered systems.