This paper investigates the verb valency structure of English that is used by English as Foreign Language(EFL)learners from a corpus-driven perspective.Specifically,it focuses on the usage of the verbs“suggest”and“...This paper investigates the verb valency structure of English that is used by English as Foreign Language(EFL)learners from a corpus-driven perspective.Specifically,it focuses on the usage of the verbs“suggest”and“advise”in a selected corpus.By analyzing a sample of written and spoken texts,this study attempts to investigate the similarities and differences in the patterns of verb valency between native English speakers and Chinese EFL learners.The findings of this research can contribute to a better understanding of the challenges faced by Chinese EFL learners in acquiring accurate verb valency structures and provide insights for language teachers in designing effective pedagogical approaches.展开更多
The relationship between bond valence and bond covalency in RMn2O5 (R = La, Pr, Nd.Sm, Eu) has been investigated by a semiempirical method. This method is the generalization of thedielectric description theory of Phil...The relationship between bond valence and bond covalency in RMn2O5 (R = La, Pr, Nd.Sm, Eu) has been investigated by a semiempirical method. This method is the generalization of thedielectric description theory of Phillips. Van Vechten, Levine and Tanaka scheme. The resultsindicate that larger valences usually result in higher bond covalencies, in good agreement with thepoint that the excess charge in the bonding region is the origin of formation of bond covalency.Other factors, such as oxidation state of elements, only make a small contribution to bondcovalency.展开更多
In this paper,the influence of crystal-field on the Luminescence properties of Eu^(2+) in complex oxides are studied theoretically by using purely electrostatic model,the dependence of the 4f^65d levels on Eu-O bond d...In this paper,the influence of crystal-field on the Luminescence properties of Eu^(2+) in complex oxides are studied theoretically by using purely electrostatic model,the dependence of the 4f^65d levels on Eu-O bond distance is given.Quantum chemistry calculation shows that the splitting extent of 4f^65d energy band in cubic or in octahedral fields will be inversely proportional to R^5,where R is the distance of Eu^(2+) to oxygen ligand.The value of R affects slightly the location of the centre of 4f^65d energy band.According to the exper- imental spectrum data,we have discussed the influence of the host chemical composition,the replaced sites of Eu^(2+) and degree of covalency of Eu-O bond on luminescence properties of Eu^(2+).Some regularity of fluorescence spectrum was observed. In alkali-alkaline earth-phosphates,the splitting extent of 4f^65d band (△E) becomes smaller as the Eu-O bond distance (R) increases.In Na_(3-x)(PO_4)_(1-x)(SO_4)_x and Na_(2-x)CaSi_(1-x)P_xO_4 hosts,d-d emission peak of Eu^(2+) will shift to shorter wavelength with the increase of x's value. The crystal structure data show that Eu^(2+) in K_2Mg_2(SO_4)_3 is affected more strongly by crystal-field and covalancy than in KMgF_3,so K_2Mg_2(SO_4)_3:Eu^(2+) emits blue light (E_(em)~m=400nm) and KMgF_3:Eu^(2+) produces ultraviolet fluorescence.展开更多
Change in valency of Nb-oxide in MnO-SiO_2-Nb_2O_5 system was studied with the electrochemical method using ZrO_2 as the solid electrolyte.Thermodynamic analysis has shown that the only possible reaction that could ta...Change in valency of Nb-oxide in MnO-SiO_2-Nb_2O_5 system was studied with the electrochemical method using ZrO_2 as the solid electrolyte.Thermodynamic analysis has shown that the only possible reaction that could take place at the working elec- trode is:2(Nb_2O_5)=2(Nb_2O_4)+O_2 with the a_0 values experimentally evaluated,values of a Nb_2O:/a Nb_2O:were calculated and isoactivity-ratio curves drawn in MnO-SiO_2-Nb_2O_5 triangles at 1418 and 1585K.The simultaneous existence of tetra-and penta-valent Nb mineral constituents in industrial Nb-bearing slags was thus verified experimentally.展开更多
The present paper focuses on a descriptive method of valency-increasing devices in five South Ethio-Semitic languages(Amharic,Harari,Kɨstane,Məsqan,and Endəgaɲ).The five languages were selected for two reasons.The fir...The present paper focuses on a descriptive method of valency-increasing devices in five South Ethio-Semitic languages(Amharic,Harari,Kɨstane,Məsqan,and Endəgaɲ).The five languages were selected for two reasons.The first reason is that conducting a valency study on all South Ethio-Semitic languages would have been impossible.With limited resources and time,it will prove difficult to cover all languages.The second reason is that,except for Amharic,these languages are known for being the least studied.Most of them even lack sufficient recording and description.So this research needs to choose the representative language in each branch.As a result,no explicit theoretical framework is followed;data analysis is guided solely by a descriptive perspective.The study’s data was gathered by consulting native speakers via elicitation.Valency has been considered as both a semantic and syntactic notion.As a semantic notion,it is used to refer to the participants in an event;as a syntactic notion,it is used to indicate the number of arguments in a construction.There are different types of transitivity classes of verbs in the South Ethio-Semitic Language,which is spoken in Ethiopia:intransitive,transitive,and ditransitive.Apart from these,there are verbs that can be used both intransitively and transitively.The facts that provide clear evidence for grammatical relations in South Ethio-Semitic languages are crucial to the study of the concept of valency-increasing devices.As is the case in many languages,South Ethio-Semitic languages possess morphosyntactic means through which the valency of verbs can be adjusted.The application of these morphosyntactic processes decreases or increases the valency of verbs.This article looks at valency-increasing devices in Causative and Applicative South Ethio-Semitic languages.展开更多
Ammonia(NH3)serves as a critical component in the fertilizer industry and fume gas denitrification.However,the conventional NH3production process,namely the Haber-Bosch process,leads to considerable energy consumption...Ammonia(NH3)serves as a critical component in the fertilizer industry and fume gas denitrification.However,the conventional NH3production process,namely the Haber-Bosch process,leads to considerable energy consumption and waste gas emissions.To address this,electrocatalytic nitric oxide reduction reaction(NORR)has emerged as a promising strategy to bridge NH3consumption to NH3production,harnessing renewable electricity for a sustainable future.Copper(Cu)stands out as a prominent electrocatalyst for NO reduction,given its exceptional NH3yield and selectivity.However,a crucial aspect that remains insufficiently explored is the effects of morphology and valence states of Cu on the NORR performance.In this investigation,we synthesized CuO nanowires(CuO-NF)and Cu nanocubes(Cu-NF)as cathodes through an in situ growth method.Remarkably,CuO-NF exhibited an impressive NH3yield of 0.50±0.02 mg cm^(-2)h^(-1)at-0.6 V vs.reversible hydrogen electrode(RHE)with faradaic efficiency of29,68%±1,35%,surpassing that of Cu-NF(0.17±0.01 mg cm^(-2)h^(-1),16.18%±1.40%).Throughout the electroreduction process,secondary cubes were generated on the CuO-NF surface,preserving their nanosheet cluster morphology,sustained by an abundant supply of subsurface oxygen(s-O)even after an extended duration of 10 h,until s-O depletion ensued.Conversely,Cu-NF exhibited inadequate s-O content,leading to rapid crystal collapse within the same timeframe.The distinctive current-potential relationship,akin to a volcano-type curve,was attributed to distinct NO hydrogenation mechanisms.Further Tafel analysis revealed the exchange current density(i0)and standard heterogeneous rate constant(k0)for CuO-NF,yielding 3.44×10^(-6)A cm^(-2)and 3.77×10^(-6)cm^(-2)s^(-1)when NORR was driven by overpotentials.These findings revealed the potential of CuO-NF for NO reduction and provided insights into the intricate interplay between crystal morphology,valence states,and electrochemical performance.展开更多
Band convergence is considered to be a strategy with clear benefits for thermoelectric performance,generally favoring the co-optimization of conductivity and Seebeck coefficients,and the conventional means include ele...Band convergence is considered to be a strategy with clear benefits for thermoelectric performance,generally favoring the co-optimization of conductivity and Seebeck coefficients,and the conventional means include elemental filling to regulate the band.However,the influence of the most electronegative fluorine on the CoSb_(3) band remains unclear.We carry out density-functional-theory calculations and show that the valence band maximum gradually shifts downward with the increase of fluorine filling,lastly the valence band maximum converges to the highly degenerated secondary valence bands in fluorine-filled skutterudites.展开更多
Cu^(+)-doped alkali borosilicate glasses with different Na_(2)O contents were prepared by the melting method,and the effects of different R values(R=Na_(2)O/B_(2)O_(3))on the structure,ion presence state and luminesce...Cu^(+)-doped alkali borosilicate glasses with different Na_(2)O contents were prepared by the melting method,and the effects of different R values(R=Na_(2)O/B_(2)O_(3))on the structure,ion presence state and luminescence properties of Cu^(+)-doped alkali borosilicate glasses were investigated.The analysis by FT-IR and Raman spectroscopy shows that,with the increase of R value of the glass,the[BO_(3)]in the structure of Cu^(+)-doped alkali borosilicate glass transforms into[BO_(4)]and the number of non-bridging oxygen in the glass network appears to be slightly increased.The absorption spectra and EPR analysis reveal that the Cu^(+)content in the glass gradually decreases and the Cu^(2+)content gradually increases as the R value of the glass increases.XPS and PL tests further indicate that the transformation of the octahedral coordination structure of Cu^(+)to the octahedral coordination structure of Cu^(2+)and the cubic coordination structure of Cu^(+)occurs in the glass as the R value of the glass increases.This transformation can effectively reduce the concentration quenching phenomenon of Cu^(+)and improve the fluorescence luminescence intensity of the glass samples.Meanwhile,the samples were found to have luminescence tunability as well as good thermal stability.展开更多
The molybdenum carbide(Mo_(2)C)has been regarded as one of the most cost-efficient and stable electrocatalyst for the hydrogen evolution reaction(HER)by the virtue of its Pt-like electronic structures.However,the inhe...The molybdenum carbide(Mo_(2)C)has been regarded as one of the most cost-efficient and stable electrocatalyst for the hydrogen evolution reaction(HER)by the virtue of its Pt-like electronic structures.However,the inherent limitation of high density of empty valence band significantly reduces its catalytic reactivity by reason of strong hydrogen desorption resistance.Herein,we propose a multiscale confinement synthesis method to design the nitrogen-rich Mo_(2)C for modulating the band structure via decomposing the pre-coordination bonded polymer in a pressure-tight tube sealing system.Pre-bonded c/N-Mo in the coordination precursor constructs a micro-confinement space,enabling the homogeneous nitrogenization in-situ happened during the formation of Mo_(2)C.Simultaneously,the evolved gases from the precursor decomposition in tube sealing system establish a macro-confinement environment,preventing the lattice N escape and further endowing a continuous nitridation.Combining the multiscale confinement effects,the nitrogen-rich Mo2C displays as high as 25%N-Mo concentration in carbide lattice,leading to a satisfactory band structure.Accordingly,the constructed nitrogen-rich Mo_(2)C reveals an adorable catalytic activity for HER in both alkaline and acid solution.It is anticipated that the multiscale confinement synthesis strategy presents guideline for the rational design of electrocatalysts and beyond.展开更多
We report on the magnetization and anomalous Hall effect(AHE)in the high-quality single crystals of the kagome magnet YbMn_(6)Sn_(6),where the spins of the Mn atoms in the kagome lattice order ferromagnetically and th...We report on the magnetization and anomalous Hall effect(AHE)in the high-quality single crystals of the kagome magnet YbMn_(6)Sn_(6),where the spins of the Mn atoms in the kagome lattice order ferromagnetically and the intermediate-valence Yb atoms are nonmagnetic.The intrinsic mechanism plays a crucial role in the AHE,leading to an enhanced anomalous Hall conductivity(AHC)compared with the other rare-earth RMn_(6)Sn_(6)compounds.Our band structure calculation reveals a strong hybridization between the 4f electrons of Yb and conduction electrons.展开更多
Recycling is viewed as a key component in a circular economy and serves as an ideal solution for promoting sustainability.During the global plastic crisis,plastic recycling practices have been adopted worldwide,leadin...Recycling is viewed as a key component in a circular economy and serves as an ideal solution for promoting sustainability.During the global plastic crisis,plastic recycling practices have been adopted worldwide,leading to the production of various products made from recycled plastics(PRP).Nevertheless,a gap persists between consumption and demand for such products,which is primarily attributed to a lack of comprehension from the consumer perspective.Given the pivotal role consumers play in the adoption of these products,this study explores consumers’intentions to purchase PRP.This is particularly significant in Vietnam,which is an emerging economy aspiring to achieve the objectives of a circular economy and sustainable development.Utilizing an integrated cognitive-emotional framework comprising the Valence Theory and the Norm Activation Model,data from 564 Vietnamese students were gathered and analyzed using structural equation modeling.The results show that awareness of consequences is a major driver of consumer purchase intentions,followed by perceived ease of application and monetary incentives.The results also indicate that health concerns have the strongest effect on purchase intention and in the negative side,meaning that the health-related risk is the primary concern for consumers during the decision-making process.This research holds substantial value for academics and managers,as it aids in the theoretical exploration and the formulation of strategies to improve consumer acceptance of PRP.展开更多
The electronic transition emission of Eu<sup>2+</sup> is in close relationship with the crystal-field environment and chemical bond property of Eu<sup>2+</sup> in hosts. The stronger the crysta...The electronic transition emission of Eu<sup>2+</sup> is in close relationship with the crystal-field environment and chemical bond property of Eu<sup>2+</sup> in hosts. The stronger the crystal-field intensity is, the larger the splitting of the 5d level is and the more favourable the broad band emission of d-f transition is. The smaller the covalency is, the smaller the展开更多
In Chinese,the“好不X”(haobu X)structure expresses three types of meanings(negation,affirmation,and both affirmation-negation),where X exhibits differences in semantic symmetry.So far,no systematic explanatory theory...In Chinese,the“好不X”(haobu X)structure expresses three types of meanings(negation,affirmation,and both affirmation-negation),where X exhibits differences in semantic symmetry.So far,no systematic explanatory theory has been proposed to account for these differences.Therefore,this paper presents and argues for an explanatory hypothesis that progresses through four stages:“很不X”(henbu X)=>“好不X”(haobu X)(negation)=>[ironic use]“好不X”(haobu X)(affirmation)=>expansion and obstruction of affirmative“好不”(haobu).Specifically,(1)the basis of the negation“好不X”(haobu X)is attributed to“很不X”(henbu X),and the semantic asymmetry of X(excluding negative words)is explained using politeness principles,irony,and the semantic valence of negation results;(2)the ironic use of the negation“好不X”(haobu X)gives rise to the affirmation“好不X”(haobu X);(3)the grammaticalization and expansion of the positive meaning of“好不”(haobu)extend to X,which cannot appear in the negative meaning“好不__”structure(including words with opposite meanings and high polarity positive words).This explains the semantic symmetry of X in the positive meaning“好不X”(haobu X)structure;(4)when the affirmation“好不”(haobu)expands to the negation“好不X”(haobu X),it encounters both obstacles(X includes neutral and some positive words)and compatibility(X is some other positive words),thus explaining the semantic asymmetry of X in the affirmation-negation“好不X”(haobu X)(i.e.,X is positive words).展开更多
The influence of bond valence on bond covalence in Lal-xCaxCrO3(x = 0.0, 0.1, 0.2, 0.3) has been studied by using semi empirical method. This method is the extortion of the dialectic description theory proposed by Phi...The influence of bond valence on bond covalence in Lal-xCaxCrO3(x = 0.0, 0.1, 0.2, 0.3) has been studied by using semi empirical method. This method is the extortion of the dialectic description theory proposed by Phillips, Van Vetches, Levine and Tanaka (PVLT). In the calculation of bond valence, two schemes were adopted. The first is the equal-valence scheme, and the second is Bond Valence Sums (BVS) scheme. Bath schemes suggest that for the title compound bond covalence be mainly influenced by bond valence, and insensitive to the Ca doping level. Generally speaking, larger bond valences usually result in higher bond covalence's.展开更多
Electrocatalysis for the oxygen evolution reactions(OER)has attracted much attention due to its important role in water splitting and rechargeable metal-air batteries.Therefore,designing highly efficient and low-cost ...Electrocatalysis for the oxygen evolution reactions(OER)has attracted much attention due to its important role in water splitting and rechargeable metal-air batteries.Therefore,designing highly efficient and low-cost catalysts for OER process is essential as the conventional catalysts still rely on precious metals.Transition metal-based compounds have been widely investigated as active OER catalysts,and renewed interest in the high valence metals engineered compounds has been achieved for superior catalytic activity and stability.However,an in-depth understanding of the construction strategies and induced effects for the high valence metals engineered catalysts is still lacking and desired.In this review,we have summarized the construction strategies of high valence metals as dopants or formed heterostructures with the iron/cobalt/nickel(Fe/Co/Ni)-based catalysts.Then the induced effects on Fe/Co/Ni-based catalysts by incorporating high valence metals,e.g.,accelerating the surface reconstruction,forming amorphous structure,generating vacancies/defects,and acting as stabilizers,are highlighted.The impacts of high valence metals on OER performance are elucidated based on different elements,including molybdenum(Mo),tungsten(W),cerium(Ce),vanadium(V),chromium(Cr),manganese(Mn),niobium(Nb),zirconium(Zr).The correlations of construction strategies,induced effects,catalytic activity and OER reaction pathways are elaborated.Finally,the remaining challenges for further enhancements of OER performance induced by high valence metals are presented.展开更多
The catalyst innovation that aims at noble-metal-free substitutes is one key aspect for future sustainable hydrogen energy deployment.In this paper,a nickel cobalt sulfoselenide/black phosphorus heterostructure(NiCoSe...The catalyst innovation that aims at noble-metal-free substitutes is one key aspect for future sustainable hydrogen energy deployment.In this paper,a nickel cobalt sulfoselenide/black phosphorus heterostructure(NiCoSe|S/BP)was fabricated to realize the highly active and durable water electrolysis through interface and valence dual-engineering.The NiCoSe|S/BP nanostructure was constructed by in-situ growing NiCo hydroxide nanosheet arrays on few-layer BP and subsequently one-step sulfoselenization by SeS2.Besides the conductive merit of BP substrate,holes in p-type BP are capable of oxidizing the Co^(2+)to high-valence and electron-accepting Co^(3+),benefiting the oxygen evolution reaction(OER).Meanwhile,Ni^(3+)/Ni^(2+)ratio in the heterostructure is reduced to maintain the electrical neutrality,which corresponds to the increased electron-donating character for boosting hydrogen evolution reaction(HER).As for HER and OER,the heterostructured NiCoSe|S/BP electrocatalyst exhibits small overpotentials of 172 and 285 mV at 10 mA cm^(-2)(η_(10))in alkaline media,respectively.And overall water splitting has been achieved at a low cell potential of 1.67 V at η_(10) with high stability.Molecular sensing and density functional theory(DFT)calculations are further proposed for understanding the rate-determine steps and enhanced catalytic mechanism.The investigation presents a deep-seated perception for the electrocatalytic performance enhancement of BP-based heterostructure.展开更多
Electrocatalyst designs based on oxophilic foreign atoms are considered a promising approach for developing efficient pH-universal hydrogen evolution reaction(HER)electrocatalysts by overcoming the sluggish alkaline H...Electrocatalyst designs based on oxophilic foreign atoms are considered a promising approach for developing efficient pH-universal hydrogen evolution reaction(HER)electrocatalysts by overcoming the sluggish alkaline HER kinetics.Here,we design ternary transition metals-based nickel telluride(Mo WNi Te)catalysts consisting of high valence non-3d Mo and W metals and oxophilic Te as a first demonstration of non-precious heterogeneous electrocatalysts following the bifunctional mechanism.The Mo WNi Te showed excellent HER catalytic performance with overpotentials of 72,125,and 182 mV to reach the current densities of 10,100,and 1000 mA cm^(-2),respectively,and the corresponding Tafel slope of 47,52,and 58 mV dec-1in alkaline media,which is much superior to commercial Pt/C.Additionally,the HER performance of Mo WNi Te is well maintained up to 3000 h at the current density of 100 mA cm^(-2).It is further demonstrated that the Mo WNi Te exhibits remarkable HER activities with an overpotential of 45 mV(31 mV)and Tafel slope of 60 mV dec-1(34 mV dec-1)at 10 mA cm^(-2)in neutral(acid)media.The superior HER performance of Mo WNi Te is attributed to the electronic structure modulation,inducing highly active low valence states by the incorporation of high valence non-3d transition metals.It is also attributed to the oxophilic effect of Te,accelerating water dissociation kinetics through a bifunctional catalytic mechanism in alkaline media.Density functional theory calculations further reveal that such synergistic effects lead to reduced free energy for an efficient water dissociation process,resulting in remarkable HER catalytic performances within universal pH environments.展开更多
Cobalt(Co)is a silver-gray,high-intensity,widely distributed metal element that exists in cobalt compounds,and its common valences are bivalence(Co2+)and trivalence(Co3+)[1].The main routes of Co-exposure are occupati...Cobalt(Co)is a silver-gray,high-intensity,widely distributed metal element that exists in cobalt compounds,and its common valences are bivalence(Co2+)and trivalence(Co3+)[1].The main routes of Co-exposure are occupational and environmental exposures.The human body can be exposed to high concentrations of Co2+through inhalation of contaminated air,consumption of contaminated food and water,or ingestion of Co-containing supplements[2].展开更多
Lead-based organic-inorganic hybrid perovskites have exhibited great potential in photovoltaics,achieving power conversion efficiencies(PCEs) exceeding 25%.However,the toxicity of lead and the instability of these mat...Lead-based organic-inorganic hybrid perovskites have exhibited great potential in photovoltaics,achieving power conversion efficiencies(PCEs) exceeding 25%.However,the toxicity of lead and the instability of these materials under moist conditions pose significant barriers to large-scale production.To overcome these limitations,researchers have proposed mixed-valence double perovskites,where Cs_(2)Au~ⅠAu~ⅢI_6 is a particularly effective absorber due to its suitable band gap and high absorptance efficiency.To further extend the scope of these lead-free materials,we varied the trivalent gold ion and halogen anion in Cs_(2)Au~ⅠAu~ⅢI_6,resulting in 18 new structures with unique properties.Further,using first-principles calculations and elimination criteria,we identified four materials with ideal band gaps,small effective carrier mass,and strong anisotropic optical properties.According to theoretical modeling,Cs_(2)AuSbCl_6,Cs_(2)AuInCl_6,and Cs_(2)AuBiCl_6 are potential candidates for solar cell absorbers,with a spectroscopic limited maximum efficiency(SLME) of approximately 30% in a 0.25 μm-thick film.These three compounds have not been previously reported,and therefore,our work provides new insights into potential materials for solar energy conversion.We aim for this theoretical exploration of novel perovskites to guide future experiments and accelerate the development of high-performance photovoltaic devices.展开更多
For pseudocapacitive electrode materials(PseEMs),despite much progress having been made in achieving both high power density and high energy density,a general strategy to guide the enhancement of intrinsic capacitive ...For pseudocapacitive electrode materials(PseEMs),despite much progress having been made in achieving both high power density and high energy density,a general strategy to guide the enhancement of intrinsic capacitive properties of PseEMs remains lacking.Here,we demonstrate a universal chargecompensating strategy to improve the charge-storage capability of PseEMs intrinsically:ⅰ) in the electrolyte with anion as charge carriers(such as OH-),reducing the multivalent cations of PseEMs into lower valences could create more reversible low-to-high valence redox cou ples to promote the intercalation of the anions;ⅱ) in the electrolytes with cation as charge carriers(such as H^(+),Li^(+),Na^(+)),oxidizing the multivalent cations of PseEMs into higher valences could introduce more reversible high-to-low valence redox couples to promote the intercalation of the cations.And we demonstrated that the improved intrinsic charge-storage capability for PseEMs originates from the increased Faradaic charge storage sites.展开更多
文摘This paper investigates the verb valency structure of English that is used by English as Foreign Language(EFL)learners from a corpus-driven perspective.Specifically,it focuses on the usage of the verbs“suggest”and“advise”in a selected corpus.By analyzing a sample of written and spoken texts,this study attempts to investigate the similarities and differences in the patterns of verb valency between native English speakers and Chinese EFL learners.The findings of this research can contribute to a better understanding of the challenges faced by Chinese EFL learners in acquiring accurate verb valency structures and provide insights for language teachers in designing effective pedagogical approaches.
文摘The relationship between bond valence and bond covalency in RMn2O5 (R = La, Pr, Nd.Sm, Eu) has been investigated by a semiempirical method. This method is the generalization of thedielectric description theory of Phillips. Van Vechten, Levine and Tanaka scheme. The resultsindicate that larger valences usually result in higher bond covalencies, in good agreement with thepoint that the excess charge in the bonding region is the origin of formation of bond covalency.Other factors, such as oxidation state of elements, only make a small contribution to bondcovalency.
文摘In this paper,the influence of crystal-field on the Luminescence properties of Eu^(2+) in complex oxides are studied theoretically by using purely electrostatic model,the dependence of the 4f^65d levels on Eu-O bond distance is given.Quantum chemistry calculation shows that the splitting extent of 4f^65d energy band in cubic or in octahedral fields will be inversely proportional to R^5,where R is the distance of Eu^(2+) to oxygen ligand.The value of R affects slightly the location of the centre of 4f^65d energy band.According to the exper- imental spectrum data,we have discussed the influence of the host chemical composition,the replaced sites of Eu^(2+) and degree of covalency of Eu-O bond on luminescence properties of Eu^(2+).Some regularity of fluorescence spectrum was observed. In alkali-alkaline earth-phosphates,the splitting extent of 4f^65d band (△E) becomes smaller as the Eu-O bond distance (R) increases.In Na_(3-x)(PO_4)_(1-x)(SO_4)_x and Na_(2-x)CaSi_(1-x)P_xO_4 hosts,d-d emission peak of Eu^(2+) will shift to shorter wavelength with the increase of x's value. The crystal structure data show that Eu^(2+) in K_2Mg_2(SO_4)_3 is affected more strongly by crystal-field and covalancy than in KMgF_3,so K_2Mg_2(SO_4)_3:Eu^(2+) emits blue light (E_(em)~m=400nm) and KMgF_3:Eu^(2+) produces ultraviolet fluorescence.
文摘Change in valency of Nb-oxide in MnO-SiO_2-Nb_2O_5 system was studied with the electrochemical method using ZrO_2 as the solid electrolyte.Thermodynamic analysis has shown that the only possible reaction that could take place at the working elec- trode is:2(Nb_2O_5)=2(Nb_2O_4)+O_2 with the a_0 values experimentally evaluated,values of a Nb_2O:/a Nb_2O:were calculated and isoactivity-ratio curves drawn in MnO-SiO_2-Nb_2O_5 triangles at 1418 and 1585K.The simultaneous existence of tetra-and penta-valent Nb mineral constituents in industrial Nb-bearing slags was thus verified experimentally.
文摘The present paper focuses on a descriptive method of valency-increasing devices in five South Ethio-Semitic languages(Amharic,Harari,Kɨstane,Məsqan,and Endəgaɲ).The five languages were selected for two reasons.The first reason is that conducting a valency study on all South Ethio-Semitic languages would have been impossible.With limited resources and time,it will prove difficult to cover all languages.The second reason is that,except for Amharic,these languages are known for being the least studied.Most of them even lack sufficient recording and description.So this research needs to choose the representative language in each branch.As a result,no explicit theoretical framework is followed;data analysis is guided solely by a descriptive perspective.The study’s data was gathered by consulting native speakers via elicitation.Valency has been considered as both a semantic and syntactic notion.As a semantic notion,it is used to refer to the participants in an event;as a syntactic notion,it is used to indicate the number of arguments in a construction.There are different types of transitivity classes of verbs in the South Ethio-Semitic Language,which is spoken in Ethiopia:intransitive,transitive,and ditransitive.Apart from these,there are verbs that can be used both intransitively and transitively.The facts that provide clear evidence for grammatical relations in South Ethio-Semitic languages are crucial to the study of the concept of valency-increasing devices.As is the case in many languages,South Ethio-Semitic languages possess morphosyntactic means through which the valency of verbs can be adjusted.The application of these morphosyntactic processes decreases or increases the valency of verbs.This article looks at valency-increasing devices in Causative and Applicative South Ethio-Semitic languages.
基金supported by the Fundamental Research Funds for the Central Universities(FRF-EYIT-23-07)。
文摘Ammonia(NH3)serves as a critical component in the fertilizer industry and fume gas denitrification.However,the conventional NH3production process,namely the Haber-Bosch process,leads to considerable energy consumption and waste gas emissions.To address this,electrocatalytic nitric oxide reduction reaction(NORR)has emerged as a promising strategy to bridge NH3consumption to NH3production,harnessing renewable electricity for a sustainable future.Copper(Cu)stands out as a prominent electrocatalyst for NO reduction,given its exceptional NH3yield and selectivity.However,a crucial aspect that remains insufficiently explored is the effects of morphology and valence states of Cu on the NORR performance.In this investigation,we synthesized CuO nanowires(CuO-NF)and Cu nanocubes(Cu-NF)as cathodes through an in situ growth method.Remarkably,CuO-NF exhibited an impressive NH3yield of 0.50±0.02 mg cm^(-2)h^(-1)at-0.6 V vs.reversible hydrogen electrode(RHE)with faradaic efficiency of29,68%±1,35%,surpassing that of Cu-NF(0.17±0.01 mg cm^(-2)h^(-1),16.18%±1.40%).Throughout the electroreduction process,secondary cubes were generated on the CuO-NF surface,preserving their nanosheet cluster morphology,sustained by an abundant supply of subsurface oxygen(s-O)even after an extended duration of 10 h,until s-O depletion ensued.Conversely,Cu-NF exhibited inadequate s-O content,leading to rapid crystal collapse within the same timeframe.The distinctive current-potential relationship,akin to a volcano-type curve,was attributed to distinct NO hydrogenation mechanisms.Further Tafel analysis revealed the exchange current density(i0)and standard heterogeneous rate constant(k0)for CuO-NF,yielding 3.44×10^(-6)A cm^(-2)and 3.77×10^(-6)cm^(-2)s^(-1)when NORR was driven by overpotentials.These findings revealed the potential of CuO-NF for NO reduction and provided insights into the intricate interplay between crystal morphology,valence states,and electrochemical performance.
基金supported by the National Natural Science Foundation of China (Grant Nos.52171220,92163212,and 92163119)the Research Funding of Wuhan Polytechnic University (Grant No.2022RZ059)the National Innovation and Entrepreneurship Training Program for College Students (Grant No.S202310497202)。
文摘Band convergence is considered to be a strategy with clear benefits for thermoelectric performance,generally favoring the co-optimization of conductivity and Seebeck coefficients,and the conventional means include elemental filling to regulate the band.However,the influence of the most electronegative fluorine on the CoSb_(3) band remains unclear.We carry out density-functional-theory calculations and show that the valence band maximum gradually shifts downward with the increase of fluorine filling,lastly the valence band maximum converges to the highly degenerated secondary valence bands in fluorine-filled skutterudites.
基金Funded by the Key R&D Projects in Hubei Province of China(No:2020BAB061)。
文摘Cu^(+)-doped alkali borosilicate glasses with different Na_(2)O contents were prepared by the melting method,and the effects of different R values(R=Na_(2)O/B_(2)O_(3))on the structure,ion presence state and luminescence properties of Cu^(+)-doped alkali borosilicate glasses were investigated.The analysis by FT-IR and Raman spectroscopy shows that,with the increase of R value of the glass,the[BO_(3)]in the structure of Cu^(+)-doped alkali borosilicate glass transforms into[BO_(4)]and the number of non-bridging oxygen in the glass network appears to be slightly increased.The absorption spectra and EPR analysis reveal that the Cu^(+)content in the glass gradually decreases and the Cu^(2+)content gradually increases as the R value of the glass increases.XPS and PL tests further indicate that the transformation of the octahedral coordination structure of Cu^(+)to the octahedral coordination structure of Cu^(2+)and the cubic coordination structure of Cu^(+)occurs in the glass as the R value of the glass increases.This transformation can effectively reduce the concentration quenching phenomenon of Cu^(+)and improve the fluorescence luminescence intensity of the glass samples.Meanwhile,the samples were found to have luminescence tunability as well as good thermal stability.
基金supported by the National Natural Science Foundation of China(52372201,52125202,52202247)the Natural Science Foundation of Jiangsu Province(1192261031693)the Fundamental Research Funds for the Central Universities(30919011110,1191030558)。
文摘The molybdenum carbide(Mo_(2)C)has been regarded as one of the most cost-efficient and stable electrocatalyst for the hydrogen evolution reaction(HER)by the virtue of its Pt-like electronic structures.However,the inherent limitation of high density of empty valence band significantly reduces its catalytic reactivity by reason of strong hydrogen desorption resistance.Herein,we propose a multiscale confinement synthesis method to design the nitrogen-rich Mo_(2)C for modulating the band structure via decomposing the pre-coordination bonded polymer in a pressure-tight tube sealing system.Pre-bonded c/N-Mo in the coordination precursor constructs a micro-confinement space,enabling the homogeneous nitrogenization in-situ happened during the formation of Mo_(2)C.Simultaneously,the evolved gases from the precursor decomposition in tube sealing system establish a macro-confinement environment,preventing the lattice N escape and further endowing a continuous nitridation.Combining the multiscale confinement effects,the nitrogen-rich Mo2C displays as high as 25%N-Mo concentration in carbide lattice,leading to a satisfactory band structure.Accordingly,the constructed nitrogen-rich Mo_(2)C reveals an adorable catalytic activity for HER in both alkaline and acid solution.It is anticipated that the multiscale confinement synthesis strategy presents guideline for the rational design of electrocatalysts and beyond.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12141002,12225401,and 12274154)the National Key Research and Development Program of China(Grant No.2021YFA1401902)+1 种基金the CAS Interdisciplinary Innovation Teamthe Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB28000000)。
文摘We report on the magnetization and anomalous Hall effect(AHE)in the high-quality single crystals of the kagome magnet YbMn_(6)Sn_(6),where the spins of the Mn atoms in the kagome lattice order ferromagnetically and the intermediate-valence Yb atoms are nonmagnetic.The intrinsic mechanism plays a crucial role in the AHE,leading to an enhanced anomalous Hall conductivity(AHC)compared with the other rare-earth RMn_(6)Sn_(6)compounds.Our band structure calculation reveals a strong hybridization between the 4f electrons of Yb and conduction electrons.
文摘Recycling is viewed as a key component in a circular economy and serves as an ideal solution for promoting sustainability.During the global plastic crisis,plastic recycling practices have been adopted worldwide,leading to the production of various products made from recycled plastics(PRP).Nevertheless,a gap persists between consumption and demand for such products,which is primarily attributed to a lack of comprehension from the consumer perspective.Given the pivotal role consumers play in the adoption of these products,this study explores consumers’intentions to purchase PRP.This is particularly significant in Vietnam,which is an emerging economy aspiring to achieve the objectives of a circular economy and sustainable development.Utilizing an integrated cognitive-emotional framework comprising the Valence Theory and the Norm Activation Model,data from 564 Vietnamese students were gathered and analyzed using structural equation modeling.The results show that awareness of consequences is a major driver of consumer purchase intentions,followed by perceived ease of application and monetary incentives.The results also indicate that health concerns have the strongest effect on purchase intention and in the negative side,meaning that the health-related risk is the primary concern for consumers during the decision-making process.This research holds substantial value for academics and managers,as it aids in the theoretical exploration and the formulation of strategies to improve consumer acceptance of PRP.
基金Project supported by the National Natural Science Foundation of China.
文摘The electronic transition emission of Eu<sup>2+</sup> is in close relationship with the crystal-field environment and chemical bond property of Eu<sup>2+</sup> in hosts. The stronger the crystal-field intensity is, the larger the splitting of the 5d level is and the more favourable the broad band emission of d-f transition is. The smaller the covalency is, the smaller the
基金2024 Key Scientific Research Project of Ordinary Colleges and Universities in Anhui Province“Research on the External Communication and Translation Modes of Hui Culture under One Belt,One Road Initiative”(2024AH053129)2022 General Project of Teaching Research on Quality Engineering in Anhui Province“Research on the Dilemmas and Countermeasures of Chinese Language Teaching for Foreign Students in Vocational Colleges under the Background of One Belt,One Road Initiative”(2022jyxm270)。
文摘In Chinese,the“好不X”(haobu X)structure expresses three types of meanings(negation,affirmation,and both affirmation-negation),where X exhibits differences in semantic symmetry.So far,no systematic explanatory theory has been proposed to account for these differences.Therefore,this paper presents and argues for an explanatory hypothesis that progresses through four stages:“很不X”(henbu X)=>“好不X”(haobu X)(negation)=>[ironic use]“好不X”(haobu X)(affirmation)=>expansion and obstruction of affirmative“好不”(haobu).Specifically,(1)the basis of the negation“好不X”(haobu X)is attributed to“很不X”(henbu X),and the semantic asymmetry of X(excluding negative words)is explained using politeness principles,irony,and the semantic valence of negation results;(2)the ironic use of the negation“好不X”(haobu X)gives rise to the affirmation“好不X”(haobu X);(3)the grammaticalization and expansion of the positive meaning of“好不”(haobu)extend to X,which cannot appear in the negative meaning“好不__”structure(including words with opposite meanings and high polarity positive words).This explains the semantic symmetry of X in the positive meaning“好不X”(haobu X)structure;(4)when the affirmation“好不”(haobu)expands to the negation“好不X”(haobu X),it encounters both obstacles(X includes neutral and some positive words)and compatibility(X is some other positive words),thus explaining the semantic asymmetry of X in the affirmation-negation“好不X”(haobu X)(i.e.,X is positive words).
基金Project supported by Laboratory of Rare Earth Chemistry and Physics and Applied Chemistry Research Centre of Changchun, China
文摘The influence of bond valence on bond covalence in Lal-xCaxCrO3(x = 0.0, 0.1, 0.2, 0.3) has been studied by using semi empirical method. This method is the extortion of the dialectic description theory proposed by Phillips, Van Vetches, Levine and Tanaka (PVLT). In the calculation of bond valence, two schemes were adopted. The first is the equal-valence scheme, and the second is Bond Valence Sums (BVS) scheme. Bath schemes suggest that for the title compound bond covalence be mainly influenced by bond valence, and insensitive to the Ca doping level. Generally speaking, larger bond valences usually result in higher bond covalence's.
基金supported by the Australian Research Council(ARC)through the Discovery Project(DP180102297)the Future Fellow Project(FT180100705)+2 种基金the support from the Open Project of State Key Laboratory of Advanced Special Steelthe Shanghai Key Laboratory of Advanced Ferrometallurgy,Shanghai University(SKLASS 2021-**)the Science and Technology Commission of Shanghai Municipality(No.19DZ2270200,20511107700)。
文摘Electrocatalysis for the oxygen evolution reactions(OER)has attracted much attention due to its important role in water splitting and rechargeable metal-air batteries.Therefore,designing highly efficient and low-cost catalysts for OER process is essential as the conventional catalysts still rely on precious metals.Transition metal-based compounds have been widely investigated as active OER catalysts,and renewed interest in the high valence metals engineered compounds has been achieved for superior catalytic activity and stability.However,an in-depth understanding of the construction strategies and induced effects for the high valence metals engineered catalysts is still lacking and desired.In this review,we have summarized the construction strategies of high valence metals as dopants or formed heterostructures with the iron/cobalt/nickel(Fe/Co/Ni)-based catalysts.Then the induced effects on Fe/Co/Ni-based catalysts by incorporating high valence metals,e.g.,accelerating the surface reconstruction,forming amorphous structure,generating vacancies/defects,and acting as stabilizers,are highlighted.The impacts of high valence metals on OER performance are elucidated based on different elements,including molybdenum(Mo),tungsten(W),cerium(Ce),vanadium(V),chromium(Cr),manganese(Mn),niobium(Nb),zirconium(Zr).The correlations of construction strategies,induced effects,catalytic activity and OER reaction pathways are elaborated.Finally,the remaining challenges for further enhancements of OER performance induced by high valence metals are presented.
基金jointly supported by the National Natural Science Foundation of China(Grant No.51802252)Natural Science Foundation of Shaanxi Province(Nos.2020JM-032,2019TD-020)+3 种基金111 project 2.0(BP0618008)the fund of the State Key Laboratory of Solidification Processing in NPU(Grant No.SKLSP202116)supported by Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials(LHG-2020-0003)China Postdoctoral Science Foundation(2019M663698)。
文摘The catalyst innovation that aims at noble-metal-free substitutes is one key aspect for future sustainable hydrogen energy deployment.In this paper,a nickel cobalt sulfoselenide/black phosphorus heterostructure(NiCoSe|S/BP)was fabricated to realize the highly active and durable water electrolysis through interface and valence dual-engineering.The NiCoSe|S/BP nanostructure was constructed by in-situ growing NiCo hydroxide nanosheet arrays on few-layer BP and subsequently one-step sulfoselenization by SeS2.Besides the conductive merit of BP substrate,holes in p-type BP are capable of oxidizing the Co^(2+)to high-valence and electron-accepting Co^(3+),benefiting the oxygen evolution reaction(OER).Meanwhile,Ni^(3+)/Ni^(2+)ratio in the heterostructure is reduced to maintain the electrical neutrality,which corresponds to the increased electron-donating character for boosting hydrogen evolution reaction(HER).As for HER and OER,the heterostructured NiCoSe|S/BP electrocatalyst exhibits small overpotentials of 172 and 285 mV at 10 mA cm^(-2)(η_(10))in alkaline media,respectively.And overall water splitting has been achieved at a low cell potential of 1.67 V at η_(10) with high stability.Molecular sensing and density functional theory(DFT)calculations are further proposed for understanding the rate-determine steps and enhanced catalytic mechanism.The investigation presents a deep-seated perception for the electrocatalytic performance enhancement of BP-based heterostructure.
基金supported through the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(2022M3H4A1A04096478)the support from the Supercomputing Center of Wuhan University。
文摘Electrocatalyst designs based on oxophilic foreign atoms are considered a promising approach for developing efficient pH-universal hydrogen evolution reaction(HER)electrocatalysts by overcoming the sluggish alkaline HER kinetics.Here,we design ternary transition metals-based nickel telluride(Mo WNi Te)catalysts consisting of high valence non-3d Mo and W metals and oxophilic Te as a first demonstration of non-precious heterogeneous electrocatalysts following the bifunctional mechanism.The Mo WNi Te showed excellent HER catalytic performance with overpotentials of 72,125,and 182 mV to reach the current densities of 10,100,and 1000 mA cm^(-2),respectively,and the corresponding Tafel slope of 47,52,and 58 mV dec-1in alkaline media,which is much superior to commercial Pt/C.Additionally,the HER performance of Mo WNi Te is well maintained up to 3000 h at the current density of 100 mA cm^(-2).It is further demonstrated that the Mo WNi Te exhibits remarkable HER activities with an overpotential of 45 mV(31 mV)and Tafel slope of 60 mV dec-1(34 mV dec-1)at 10 mA cm^(-2)in neutral(acid)media.The superior HER performance of Mo WNi Te is attributed to the electronic structure modulation,inducing highly active low valence states by the incorporation of high valence non-3d transition metals.It is also attributed to the oxophilic effect of Te,accelerating water dissociation kinetics through a bifunctional catalytic mechanism in alkaline media.Density functional theory calculations further reveal that such synergistic effects lead to reduced free energy for an efficient water dissociation process,resulting in remarkable HER catalytic performances within universal pH environments.
基金funded by the Grant of the Department of Science and Technology of Jilin Province,grant number[20200201156JC]Jilin Province Health Science and Technology ability advancement project,grant number[2022Jc081].
文摘Cobalt(Co)is a silver-gray,high-intensity,widely distributed metal element that exists in cobalt compounds,and its common valences are bivalence(Co2+)and trivalence(Co3+)[1].The main routes of Co-exposure are occupational and environmental exposures.The human body can be exposed to high concentrations of Co2+through inhalation of contaminated air,consumption of contaminated food and water,or ingestion of Co-containing supplements[2].
基金the National Natural Science Foundation of China (22175180, 21975260)。
文摘Lead-based organic-inorganic hybrid perovskites have exhibited great potential in photovoltaics,achieving power conversion efficiencies(PCEs) exceeding 25%.However,the toxicity of lead and the instability of these materials under moist conditions pose significant barriers to large-scale production.To overcome these limitations,researchers have proposed mixed-valence double perovskites,where Cs_(2)Au~ⅠAu~ⅢI_6 is a particularly effective absorber due to its suitable band gap and high absorptance efficiency.To further extend the scope of these lead-free materials,we varied the trivalent gold ion and halogen anion in Cs_(2)Au~ⅠAu~ⅢI_6,resulting in 18 new structures with unique properties.Further,using first-principles calculations and elimination criteria,we identified four materials with ideal band gaps,small effective carrier mass,and strong anisotropic optical properties.According to theoretical modeling,Cs_(2)AuSbCl_6,Cs_(2)AuInCl_6,and Cs_(2)AuBiCl_6 are potential candidates for solar cell absorbers,with a spectroscopic limited maximum efficiency(SLME) of approximately 30% in a 0.25 μm-thick film.These three compounds have not been previously reported,and therefore,our work provides new insights into potential materials for solar energy conversion.We aim for this theoretical exploration of novel perovskites to guide future experiments and accelerate the development of high-performance photovoltaic devices.
基金supported by the National Natural Science Foundation of China(51972146,52072150)。
文摘For pseudocapacitive electrode materials(PseEMs),despite much progress having been made in achieving both high power density and high energy density,a general strategy to guide the enhancement of intrinsic capacitive properties of PseEMs remains lacking.Here,we demonstrate a universal chargecompensating strategy to improve the charge-storage capability of PseEMs intrinsically:ⅰ) in the electrolyte with anion as charge carriers(such as OH-),reducing the multivalent cations of PseEMs into lower valences could create more reversible low-to-high valence redox cou ples to promote the intercalation of the anions;ⅱ) in the electrolytes with cation as charge carriers(such as H^(+),Li^(+),Na^(+)),oxidizing the multivalent cations of PseEMs into higher valences could introduce more reversible high-to-low valence redox couples to promote the intercalation of the cations.And we demonstrated that the improved intrinsic charge-storage capability for PseEMs originates from the increased Faradaic charge storage sites.