Spinal cord injury is a very common pathological event that has devastating functional consequences in patients. In recent years, several research groups are trying to find an effective therapy that could be applied i...Spinal cord injury is a very common pathological event that has devastating functional consequences in patients. In recent years, several research groups are trying to find an effective therapy that could be applied in clinical practice. In this study, we analyzed the combination of different strategies as a potential therapy for spinal cord injury. Immunization with neural derived peptides(INDP), inhibition of glial scar formation(dipyridyl: DPY), as well as the use of biocompatible matrix(fibrin glue: FG) impregnated with bone marrow mesenchymal stem cells(MSCs) were combined and then its beneficial effects were evaluated in the induction of neuroprotection and neuroregeneration after acute SCI. Sprague-Dawley female rats were subjected to a moderate spinal cord injury and then randomly allocated into five groups: 1) phosphate buffered saline; 2) DPY; 3) INDP + DPY; 4) DPY+ FG; 5) INDP + DPY + FG + MSCs. In all rats, intervention was performed 72 hours after spinal cord injury. Locomotor and sensibility recovery was assessed in all rats. At 60 days after treatment, histological examinations of the spinal cord(hematoxylin-eosin and Bielschowsky staining) were performed. Our results showed that the combination therapy(DPY+ INDP + FG+ MSCs) was the best strategy to promote motor and sensibility recovery. In addition, significant increases in tissue preservation and axonal density were observed in the combination therapy group. Findings from this study suggest that the combination theapy(DPY+ INDP + FG + MSCs) exhibits potential effects on the protection and regeneration of neural tissue after acute spinal cord injury. All procedures were approved by the Animal Bioethics and Welfare Committee(approval No. 178544; CSNBTBIBAJ 090812960)on August 15, 2016.展开更多
Reading guide 1778Repair of long-segment peripheral nerve defects1779Bionic reconstruction of hand function after adult brachial plexus root avulsion1780Optimized design of regeneration material for the treatment of p...Reading guide 1778Repair of long-segment peripheral nerve defects1779Bionic reconstruction of hand function after adult brachial plexus root avulsion1780Optimized design of regeneration material for the treatment of peripheral nerve injury1781Synergism of electroactive polymeric materials and electrical stimulation promotes peripheral nerve repair1783Schwann cell effect on peripheral nerve repair and regeneration .展开更多
In 1998, the Chinese Government implemented the NFPP (Natural Forest Protection Program), which included logging restrictions, protected areas, replanting, and a range of other policies aimed at safeguarding the sta...In 1998, the Chinese Government implemented the NFPP (Natural Forest Protection Program), which included logging restrictions, protected areas, replanting, and a range of other policies aimed at safeguarding the state of the country's forests and reducing the risk of erosion and flooding. A second phase of this program is currently being discussed. In this paper, contingent valuation is used to estimate the WTP (willingness to pay) for maintaining the program among the inhabitants in Heilongjiang Province in northern China. The results show that, even with fairly conservative assumptions, the aggregated WTP for maintaining the program for another five years is some 3.24 billion yuan per year. This can be compared with the current cost of the Program in the province, which is some 1.57 billion yuan per year.展开更多
The purpose of this paper is to investigate the relationship between investor protection, ownership structure and corporate valuation. La Porta showed that there existed a simple linear relationship between corporate ...The purpose of this paper is to investigate the relationship between investor protection, ownership structure and corporate valuation. La Porta showed that there existed a simple linear relationship between corporate valuation and the holding percentage of controlling shareholders. But recent empirical evidence does not support it. A nonlinear relationship is proved between ownership structure and corporate valuaton by relaxing the assumption of La Porta's model in this paper. There exists a positive relation between investor protection and corporate valuation. Our empirical research shows that this relation is significantly positive indeed.展开更多
Cell transplantation is a potential treatment for spinal cord injury. Olfactory ensheathing cells(OECs) play an active role in the repair of spinal cord injury as a result of the dual characteristics of astrocytes and...Cell transplantation is a potential treatment for spinal cord injury. Olfactory ensheathing cells(OECs) play an active role in the repair of spinal cord injury as a result of the dual characteristics of astrocytes and Schwann cells. However, the specific mechanisms of repair remain poorly understood. In the present study, a rat model of spinal cord injury was established by transection of T10. OECs were injected into the site, 1 mm from the spinal cord stump. To a certain extent, OEC transplantation restored locomotor function in the hindlimbs of rats with spinal cord injury, but had no effect on the formation or volume of glial scars. In addition, OEC transplantation reduced the immunopositivity of chondroitin sulfate proteoglycans(neural/glial antigen 2 and neurocan) and glial fibrillary acidic protein at the injury site, and increased the immunopositivity of growth-associated protein 43 and neurofilament. These findings suggest that OEC transplantation can regulate the expression of chondroitin sulfate proteoglycans in the spinal cord, inhibit scar formation caused by the excessive proliferation of glial cells, and increase the numbers of regenerated nerve fibers, thus promoting axonal regeneration after spinal cord injury. The study was approved by the Animal Ethics Committee of the Medical College of Xi'an Jiaotong University, China(approval No. 2018-2048) on September 9, 2018.展开更多
The regulatory mechanisms of cytoplasmic Ca2+ after myocardial infarction-induced Ca2+ overload involve secretory pathway Ca2+-ATPase 1 and the Golgi apparatus and are well understood. However, the effect of Golgi ...The regulatory mechanisms of cytoplasmic Ca2+ after myocardial infarction-induced Ca2+ overload involve secretory pathway Ca2+-ATPase 1 and the Golgi apparatus and are well understood. However, the effect of Golgi apparatus on Ca2+ overload after cerebral ischemia and reperfusion remains unclear. Four-vessel occlusion rats were used as animal models of cerebral ischemia. The expression of secretory pathway Ca2+-ATPase 1 in the cortex and hippocampus was detected by immunoblotting, and Ca2+ concentrations in the cytoplasm and Golgi vesicles were determined. Results showed an overload of cytoplasmic Ca2+ during ischemia and reperfusion that reached a peak after reperfusion. Levels of Golgi Ca2+ showed an opposite effect. The expression of Golgi-specific secretory pathway Ca2+-ATPase 1 in the cortex and hippocampus decreased before ischemia and reperfusion, and increased after reperfusion for 6 hours. This variation was similar to the alteration of calcium in separated Golgi vesicles. These results indicate that the Golgi apparatus participates in the formation and alleviation of calcium overload, and that secretory pathway Ca2+-ATPase 1 tightly responds to ischemia and reperfusion in nerve cells. Thus, we concluded that secretory pathway Ca2+-ATPase 1 plays an essential role in cytosolic calcium regulation and its expression can be used as a marker of Golgi stress, responding to cerebral ischemia and reperfusion. The secretory pathway Ca2+-ATPase 1 can be an important neuroprotective target of ischemic stroke.展开更多
The present study established a rat model of focal brain ischemia by occlusion of the middle cerebral artery covered with FeCl3, and investigated the protective effect of 3'-methoxy-puerarin. Hippocampal and cortical...The present study established a rat model of focal brain ischemia by occlusion of the middle cerebral artery covered with FeCl3, and investigated the protective effect of 3'-methoxy-puerarin. Hippocampal and cortical c-fos gene expression was determined using in situ hybridization. Results showed that 3'-methoxy-puerarin reduced neurological deficit scores, cerebral infarcted zone and water content of brain tissues, dramatically increased the activity of catalase and glutathione peroxidase in the ischemia zone of the hippocampus, increased the activity of catalase in the cortex, decreased lipid peroxide and lactic acid contents in the hippocampus and cerebral cortex, and down-regulated c-fos gene expression in brain ischemic rats. Results demonstrated that 3'-methoxy-puerarin exhibited cerebroprotective effects against focal brain ischemia, which involved c-fos gene expression.展开更多
The protected historical blocks always fail to undertake some necessary functions of modern cities because they inherit texture and skyline of historical spaces,and also traditional building density,so these blocks la...The protected historical blocks always fail to undertake some necessary functions of modern cities because they inherit texture and skyline of historical spaces,and also traditional building density,so these blocks lack in popularity and fall into rigid display of folk customs.In view of the contradiction between protection and vitality,this study proposes the concept of"intergrowth between underground space and urban block"on the basis of theoretic researches and construction practices,aims at renovating urban public green spaces by following the principle of regeneration of place,so as to improve and make up modern urban functions of historical blocks,stimulate vitality of the community,provide an effective solution to the development of new cities and renovation of old cities.展开更多
Neuroprotection by ischemic preconditioning has been confirmed by many studies, but the precise mechanism remains unclear. In the present study, we performed cerebral ischemic pre- conditioning in rats by simulating a...Neuroprotection by ischemic preconditioning has been confirmed by many studies, but the precise mechanism remains unclear. In the present study, we performed cerebral ischemic pre- conditioning in rats by simulating a transient ischemic attack twice (each a 20-minute occlusion of the middle cerebral artery) before inducing focal cerebral infarction (2 hour occlusion-reper- fusion in the same artery). We also explored the mechanism underlying the neuroprotective effect of ischemic preconditioning. Seven days after ocdusion-reperfusion, tetrazolium chloride staining and immunohistochemistry revealed that the infarct volume was significantly smaller in the group that underwent preconditioning than in the model group. Furthermore, vascular endothelial growth factor immunoreactivity was considerably greater in the hippocampal CA3 region of preconditioned rats than model rats. Our results suggest that the protective effects of ischemic preconditioning on focal cerebral infarction are associated with upregulation of vascu- lar endothelial growth factor.展开更多
BACKGROUND: The majority of studies addressing spinal cord ischemia/reperfusion injury (SCIRI) have focused on drugs, proteins, cytokines, and various surgical techniques. A recent study reports that human umbilica...BACKGROUND: The majority of studies addressing spinal cord ischemia/reperfusion injury (SCIRI) have focused on drugs, proteins, cytokines, and various surgical techniques. A recent study reports that human umbilical cord mesenchymal stem cell (hUCMSC) transplantation achieves good therapeutic effects, but the mechanisms underlying nerve protection remain poorly understood. OBJECTIVE: To observe survival of transplanted hUCMSCs in SCIRI rat models and the influence on motor function in the hind limbs, to determine interleukin-8 expression and cellular apoptosis in spinal cord tissues, and to verify the hypothesis that hUCMSC transplantation exhibits protective effects on SCIRI. DESIGN, TIME AND SETTING: A randomized, controlled, animal experiment was performed at the Laboratory of the Department of Orthopedics in the First Affiliated Hospital of Soochow University, China between January 2007 and December 2008. MATERIALS: hUCMSCs were harvested from umbilical cord blood of healthy pregnant women after parturition in the Obstetrical Department of the First Affiliated Hospital of Soochow University, China. Rabbit anti-human BrdU monoclonal antibody was provided by DAKO, USA. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) Kit and enzyme-linked immunosorbent assay (ELISA) Kit were purchased by Wuhan Boster, China. METHODS: A total of 72 healthy, Wistar, adult rats were randomly assigned to three groups: sham-surgery, model, and transplantation, with 24 rats in each group. SCIRI was induced in the model and transplantation groups via the abdominal aorta block method. The infrarenal abdominal aorta was not blocked in the sham-surgery group. Prior to abdominal aorta occlusion, 0.2 03 mL bromodeoxyuridine (BrdU)-Iabeled hUCMSCs suspension (cell concentration 5 × 10 3/uL) was injected through the great saphenous vein of the hind limb, and an equal volume of physiological saline was administered to the model and sham-surgery groups. MAIN OUTCOME MEASURES: Pathological observation of rat spinal cord tissues was performed by hematoxylin-eosin staining at 6, 24, and 48 hours post-surgery. Immunohistochemistry was applied to determine hUCMSCs survival in the spinal cord. The amount of cellular apoptosis and interleukin-8 expression in spinal cord tissues was assayed utilizing the TUNEL and ELISA methods, respectively. Motor function in the hind limbs was evaluated according to Jacob's score. RESULTS: Numerous BrdU-positive cells were observed in spinal cord tissues from the transplantation group. The number of apoptotic cells and interleukin-8 levels significantly decreased in the transplantation group (P 〈 0.05), pathological injury was significantly ameliorated, and motor function scores significantly increased (P 〈 0.05) compared with the model group. CONCLUSION: Via vein transplantation, hUCMSCs were shown to reach and survive in the injury area. Results suggested that the transplanted hUCMSCs contributed to significantly improved pathological changes in the injured spinal cord, as well as motor function, following SCIRI. The protective mechanism correlated with inhibition of cellular apoptosis and reduced production of inflammatory mediators.展开更多
Previous studies have shown that vagus nerve stimulation can improve the prognosis of trau- matic brain injury. The aim of this study was to elucidate the mechanism of the neuroprotective effects of vagus nerve stimul...Previous studies have shown that vagus nerve stimulation can improve the prognosis of trau- matic brain injury. The aim of this study was to elucidate the mechanism of the neuroprotective effects of vagus nerve stimulation in rabbits with brain explosive injury. Rabbits with brain ex- plosive injury received continuous stimulation (10 V, 5 Hz, 5 ms, 20 minutes) of the right cervical vagus nerve. Tumor necrosis factor-a, interleukin-l~ and interleukin-10 concentrations were detected in serum and brain tissues, and water content in brain tissues was measured. Results showed that vagus nerve stimulation could reduce the degree of brain edema, decrease tumor necrosis factor-a and interleukin-1β concentrations, and increase interleukin-10 concentration after brain explosive injury in rabbits. These data suggest that vagus nerve stimulation may exert neuroprotective effects against explosive injury via regulating the expression of tumor necrosis factor-a, interleukin-1 β and interleukin-10 in the serum and brain tissue.展开更多
Acrylamide has been shown to be neurotoxic.Brain-derived neurotrophic factor(BDNF)can alleviate acrylamide-induced synaptic injury;however,the underlying mechanism remains unclear.In this study,dibutyryl-cyclic adenos...Acrylamide has been shown to be neurotoxic.Brain-derived neurotrophic factor(BDNF)can alleviate acrylamide-induced synaptic injury;however,the underlying mechanism remains unclear.In this study,dibutyryl-cyclic adenosine monophosphate-induced mature human neuroblastoma(NB-1)cells were exposed with 0–100μg/mL acrylamide for 24–72 hours.Acrylamide decreased cell viability and destroyed synapses.Exposure of co-cultured NB-1 cells and Schwann cells to 0–100μg/mL acrylamide for 48 hours resulted in upregulated expression of synapsin I and BDNF,suggesting that Schwann cells can activate self-protection of neurons.Under co-culture conditions,activation of the downstream TrkB-MAPK-Erk1/2 pathway strengthened the protective effect.Exogenous BDNF can increase expression of TrkB,Erk1/2,and synapsin I,while exogenous BDNF or the TrkB inhibitor K252a could inhibit these changes.Taken together,Schwann cells may act through the BDNF-TrkB-MAPK-Erk1/2 signaling pathway,indicating that BDNF plays an important role in this process.Therefore,exogenous BDNF may be an effective treatment strategy for acrylamide-induced nerve injury.This study was approved by the Laboratory Animal Welfare and Ethics Committee of the National Institute of Occupational Health and Poison Control,a division of the Chinese Center for Disease Control and Prevention(approval No.EAWE-2017-008)on May 29,2017.展开更多
Astrocytes in an in vitro murine astrocyte model of oxygen and glucose deprivation/hypoxia and reoxygenation were treated with different concentrations of triptolide (250, 500, 1 000 ng/mL) in a broader attempt to e...Astrocytes in an in vitro murine astrocyte model of oxygen and glucose deprivation/hypoxia and reoxygenation were treated with different concentrations of triptolide (250, 500, 1 000 ng/mL) in a broader attempt to elucidate the protection and mechanism underlying triptolide treatment on astrocytes exposed to hypoxia/reoxygenation injury. The results showed that the matrix metalloproteinase-9, interleukin-1β, tumor necrosis factor α and interleukin-6 expressions were significantly decreased after triptolide treatment in the astrocytes exposed to hypoxia/ reoxygenation injury, while interleukin-10 expression was upregulated. In addition, the vitality of the injured astrocytes was enhanced, the triptolide's effect was apparent at 500 ng/mL. These experimental findings indicate that triptolide treatment could protect astrocytes against hypoxia/ reoxygenation injury through the inhibition of inflammatory response and the reduction of matrix metalloproteinase-9 expression.展开更多
With the support by the National Natural Science Foundation of China and the Chinese Academy of Sciences,the research team led by Prof.Liu GuangHui(刘光慧)at the CAS National Laboratory of Biomacromolecules,Institute ...With the support by the National Natural Science Foundation of China and the Chinese Academy of Sciences,the research team led by Prof.Liu GuangHui(刘光慧)at the CAS National Laboratory of Biomacromolecules,Institute of Biophysics,Chinese Academy of Sciences,generated the world's first genetically enhanced human vascular cells by targeting a single longevity gene,FOXO3.This study was recently published in Cell Stem Cell(2019)as a cover story.展开更多
Stroke is the third leading cause of death and the first cause of adult disability in industrial countries [1]. It is charicaterized by hemiplegia, hemianopsia, aphasia, mouth askew and sever sequelae. It is considere...Stroke is the third leading cause of death and the first cause of adult disability in industrial countries [1]. It is charicaterized by hemiplegia, hemianopsia, aphasia, mouth askew and sever sequelae. It is considered that an ischemic disease without any specific treatment method and few effective drugs such as tPA (human tissue-type plasminogen activator) and Edarovone with specific therapeutic window will cause a lot of disadvantages if being used inaccurate. Root of Panax notoginseng (PN) which is one of traditional Chinese medicines (TCMs), was first found in “Shennong’s Classic of Materia Medica” around 200 AD. Panax notogineng saponins(PNS) is a multi-components mixture containing ginseng and saponins as the most important bioactive components which are commonly used in clinical treatment. Also, ginseng and saponins form the main components of many herbal medicines in the market, e.g., Xueshuantong injection [2], Xuesaitong injection [3], Xuesaitong soft capsule [4] and so on. The main monomers of Panax notoginseng saponins (PNS) are Ginsenoside-Rb1, Gensenoside-Rg1, Gensenoside-Re, Gensenoside-Rd and Panax notoginseng saponins-R1 [5]. In this review, we found some important points as well as shortcomings that require special consideration. We therefore highlighted the advances in neuro-protection of PNS and its main monomers in the area of experimental research.展开更多
In order to provide a novel and more effective alternative to the commonly used relay protection testing device that outputs only the sinusoidal testing signals, the concept of fault waveform regenerator is proposed i...In order to provide a novel and more effective alternative to the commonly used relay protection testing device that outputs only the sinusoidal testing signals, the concept of fault waveform regenerator is proposed in this paper, together with its hardware structure and software flow chart. Fault waveform regenerator mainly depends on its power amplifiers (PAs) to regenerate the fault waveforms recorded by digital fault recorder (DFR). To counteract the PA’s inherent nonlinear distortions, a digital closed-loop modification technique that is different from the predistortion technique is conceived. And the experimental results verify the effectiveness of the fault waveform regenerator based on the digital closed-loop modification technique.展开更多
基金supported by the National Council of Science and Technology of Mexico(CONACYT),No.178544(to AI)
文摘Spinal cord injury is a very common pathological event that has devastating functional consequences in patients. In recent years, several research groups are trying to find an effective therapy that could be applied in clinical practice. In this study, we analyzed the combination of different strategies as a potential therapy for spinal cord injury. Immunization with neural derived peptides(INDP), inhibition of glial scar formation(dipyridyl: DPY), as well as the use of biocompatible matrix(fibrin glue: FG) impregnated with bone marrow mesenchymal stem cells(MSCs) were combined and then its beneficial effects were evaluated in the induction of neuroprotection and neuroregeneration after acute SCI. Sprague-Dawley female rats were subjected to a moderate spinal cord injury and then randomly allocated into five groups: 1) phosphate buffered saline; 2) DPY; 3) INDP + DPY; 4) DPY+ FG; 5) INDP + DPY + FG + MSCs. In all rats, intervention was performed 72 hours after spinal cord injury. Locomotor and sensibility recovery was assessed in all rats. At 60 days after treatment, histological examinations of the spinal cord(hematoxylin-eosin and Bielschowsky staining) were performed. Our results showed that the combination therapy(DPY+ INDP + FG+ MSCs) was the best strategy to promote motor and sensibility recovery. In addition, significant increases in tissue preservation and axonal density were observed in the combination therapy group. Findings from this study suggest that the combination theapy(DPY+ INDP + FG + MSCs) exhibits potential effects on the protection and regeneration of neural tissue after acute spinal cord injury. All procedures were approved by the Animal Bioethics and Welfare Committee(approval No. 178544; CSNBTBIBAJ 090812960)on August 15, 2016.
基金supported by the National Natural Science Foundation of ChinaNo.31271055+37 种基金3147094420906088funded by the Chinese National Ministry of Science and Technology 973 ProjectNo.2014CB542201863 ProjectNo.SS2015AA020501the Ministry of Education Innovation Team(IRT1201)the National Natural Science FundNo.31571235313712103127128431171150the Educational Ministry New Century Excellent Talents Support ProjectNo.BMU20110270supported by the National Natural Science Foundation of ChinaNo.31200799 and 81571198the New Century Excellent Talents in UniversityNo.NCET-12-0742the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)supported by the Key Talent Fund Project of "Science Education for Health"Engineering of Health Department of Jiangsu Province of ChinaNo.RC2011101funded by Chinese National Ministry of Science and Technology 973 ProjectNo.2014CB542202Natural Science Foundation of ChinaNo.8137135481571182Natural Science Foundation of Guangdong ProvinceNo.S2013010014697Science and Technology Foundation of Guangdong ProvinceNo.2015A020212024funded by the National Natural Science Foundation of ChinaNo.3117094631300805the People’s Liberation Army 12th Five-Year Plan PeriodNo.BWS11J025the National Basic Research Program of ChinaNo.2012CB5181062014CB542201
文摘Reading guide 1778Repair of long-segment peripheral nerve defects1779Bionic reconstruction of hand function after adult brachial plexus root avulsion1780Optimized design of regeneration material for the treatment of peripheral nerve injury1781Synergism of electroactive polymeric materials and electrical stimulation promotes peripheral nerve repair1783Schwann cell effect on peripheral nerve repair and regeneration .
文摘In 1998, the Chinese Government implemented the NFPP (Natural Forest Protection Program), which included logging restrictions, protected areas, replanting, and a range of other policies aimed at safeguarding the state of the country's forests and reducing the risk of erosion and flooding. A second phase of this program is currently being discussed. In this paper, contingent valuation is used to estimate the WTP (willingness to pay) for maintaining the program among the inhabitants in Heilongjiang Province in northern China. The results show that, even with fairly conservative assumptions, the aggregated WTP for maintaining the program for another five years is some 3.24 billion yuan per year. This can be compared with the current cost of the Program in the province, which is some 1.57 billion yuan per year.
文摘The purpose of this paper is to investigate the relationship between investor protection, ownership structure and corporate valuation. La Porta showed that there existed a simple linear relationship between corporate valuation and the holding percentage of controlling shareholders. But recent empirical evidence does not support it. A nonlinear relationship is proved between ownership structure and corporate valuaton by relaxing the assumption of La Porta's model in this paper. There exists a positive relation between investor protection and corporate valuation. Our empirical research shows that this relation is significantly positive indeed.
基金supported by Shaanxi Provincial Key Research and Development Plan in 2018,No. 2018SF-124 (to GYW)National Key Research and Development Project of the People’s Republic of China,No. 2018YFE0114200 (to XJH)。
文摘Cell transplantation is a potential treatment for spinal cord injury. Olfactory ensheathing cells(OECs) play an active role in the repair of spinal cord injury as a result of the dual characteristics of astrocytes and Schwann cells. However, the specific mechanisms of repair remain poorly understood. In the present study, a rat model of spinal cord injury was established by transection of T10. OECs were injected into the site, 1 mm from the spinal cord stump. To a certain extent, OEC transplantation restored locomotor function in the hindlimbs of rats with spinal cord injury, but had no effect on the formation or volume of glial scars. In addition, OEC transplantation reduced the immunopositivity of chondroitin sulfate proteoglycans(neural/glial antigen 2 and neurocan) and glial fibrillary acidic protein at the injury site, and increased the immunopositivity of growth-associated protein 43 and neurofilament. These findings suggest that OEC transplantation can regulate the expression of chondroitin sulfate proteoglycans in the spinal cord, inhibit scar formation caused by the excessive proliferation of glial cells, and increase the numbers of regenerated nerve fibers, thus promoting axonal regeneration after spinal cord injury. The study was approved by the Animal Ethics Committee of the Medical College of Xi'an Jiaotong University, China(approval No. 2018-2048) on September 9, 2018.
基金supported by the National Natural Science Foundation of China,No.81171239
文摘The regulatory mechanisms of cytoplasmic Ca2+ after myocardial infarction-induced Ca2+ overload involve secretory pathway Ca2+-ATPase 1 and the Golgi apparatus and are well understood. However, the effect of Golgi apparatus on Ca2+ overload after cerebral ischemia and reperfusion remains unclear. Four-vessel occlusion rats were used as animal models of cerebral ischemia. The expression of secretory pathway Ca2+-ATPase 1 in the cortex and hippocampus was detected by immunoblotting, and Ca2+ concentrations in the cytoplasm and Golgi vesicles were determined. Results showed an overload of cytoplasmic Ca2+ during ischemia and reperfusion that reached a peak after reperfusion. Levels of Golgi Ca2+ showed an opposite effect. The expression of Golgi-specific secretory pathway Ca2+-ATPase 1 in the cortex and hippocampus decreased before ischemia and reperfusion, and increased after reperfusion for 6 hours. This variation was similar to the alteration of calcium in separated Golgi vesicles. These results indicate that the Golgi apparatus participates in the formation and alleviation of calcium overload, and that secretory pathway Ca2+-ATPase 1 tightly responds to ischemia and reperfusion in nerve cells. Thus, we concluded that secretory pathway Ca2+-ATPase 1 plays an essential role in cytosolic calcium regulation and its expression can be used as a marker of Golgi stress, responding to cerebral ischemia and reperfusion. The secretory pathway Ca2+-ATPase 1 can be an important neuroprotective target of ischemic stroke.
文摘The present study established a rat model of focal brain ischemia by occlusion of the middle cerebral artery covered with FeCl3, and investigated the protective effect of 3'-methoxy-puerarin. Hippocampal and cortical c-fos gene expression was determined using in situ hybridization. Results showed that 3'-methoxy-puerarin reduced neurological deficit scores, cerebral infarcted zone and water content of brain tissues, dramatically increased the activity of catalase and glutathione peroxidase in the ischemia zone of the hippocampus, increased the activity of catalase in the cortex, decreased lipid peroxide and lactic acid contents in the hippocampus and cerebral cortex, and down-regulated c-fos gene expression in brain ischemic rats. Results demonstrated that 3'-methoxy-puerarin exhibited cerebroprotective effects against focal brain ischemia, which involved c-fos gene expression.
基金Supported by the Youth Foundation of Humanities and Social Sciences Program,Ministry of Education(12YJCZH032)
文摘The protected historical blocks always fail to undertake some necessary functions of modern cities because they inherit texture and skyline of historical spaces,and also traditional building density,so these blocks lack in popularity and fall into rigid display of folk customs.In view of the contradiction between protection and vitality,this study proposes the concept of"intergrowth between underground space and urban block"on the basis of theoretic researches and construction practices,aims at renovating urban public green spaces by following the principle of regeneration of place,so as to improve and make up modern urban functions of historical blocks,stimulate vitality of the community,provide an effective solution to the development of new cities and renovation of old cities.
文摘Neuroprotection by ischemic preconditioning has been confirmed by many studies, but the precise mechanism remains unclear. In the present study, we performed cerebral ischemic pre- conditioning in rats by simulating a transient ischemic attack twice (each a 20-minute occlusion of the middle cerebral artery) before inducing focal cerebral infarction (2 hour occlusion-reper- fusion in the same artery). We also explored the mechanism underlying the neuroprotective effect of ischemic preconditioning. Seven days after ocdusion-reperfusion, tetrazolium chloride staining and immunohistochemistry revealed that the infarct volume was significantly smaller in the group that underwent preconditioning than in the model group. Furthermore, vascular endothelial growth factor immunoreactivity was considerably greater in the hippocampal CA3 region of preconditioned rats than model rats. Our results suggest that the protective effects of ischemic preconditioning on focal cerebral infarction are associated with upregulation of vascu- lar endothelial growth factor.
文摘BACKGROUND: The majority of studies addressing spinal cord ischemia/reperfusion injury (SCIRI) have focused on drugs, proteins, cytokines, and various surgical techniques. A recent study reports that human umbilical cord mesenchymal stem cell (hUCMSC) transplantation achieves good therapeutic effects, but the mechanisms underlying nerve protection remain poorly understood. OBJECTIVE: To observe survival of transplanted hUCMSCs in SCIRI rat models and the influence on motor function in the hind limbs, to determine interleukin-8 expression and cellular apoptosis in spinal cord tissues, and to verify the hypothesis that hUCMSC transplantation exhibits protective effects on SCIRI. DESIGN, TIME AND SETTING: A randomized, controlled, animal experiment was performed at the Laboratory of the Department of Orthopedics in the First Affiliated Hospital of Soochow University, China between January 2007 and December 2008. MATERIALS: hUCMSCs were harvested from umbilical cord blood of healthy pregnant women after parturition in the Obstetrical Department of the First Affiliated Hospital of Soochow University, China. Rabbit anti-human BrdU monoclonal antibody was provided by DAKO, USA. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) Kit and enzyme-linked immunosorbent assay (ELISA) Kit were purchased by Wuhan Boster, China. METHODS: A total of 72 healthy, Wistar, adult rats were randomly assigned to three groups: sham-surgery, model, and transplantation, with 24 rats in each group. SCIRI was induced in the model and transplantation groups via the abdominal aorta block method. The infrarenal abdominal aorta was not blocked in the sham-surgery group. Prior to abdominal aorta occlusion, 0.2 03 mL bromodeoxyuridine (BrdU)-Iabeled hUCMSCs suspension (cell concentration 5 × 10 3/uL) was injected through the great saphenous vein of the hind limb, and an equal volume of physiological saline was administered to the model and sham-surgery groups. MAIN OUTCOME MEASURES: Pathological observation of rat spinal cord tissues was performed by hematoxylin-eosin staining at 6, 24, and 48 hours post-surgery. Immunohistochemistry was applied to determine hUCMSCs survival in the spinal cord. The amount of cellular apoptosis and interleukin-8 expression in spinal cord tissues was assayed utilizing the TUNEL and ELISA methods, respectively. Motor function in the hind limbs was evaluated according to Jacob's score. RESULTS: Numerous BrdU-positive cells were observed in spinal cord tissues from the transplantation group. The number of apoptotic cells and interleukin-8 levels significantly decreased in the transplantation group (P 〈 0.05), pathological injury was significantly ameliorated, and motor function scores significantly increased (P 〈 0.05) compared with the model group. CONCLUSION: Via vein transplantation, hUCMSCs were shown to reach and survive in the injury area. Results suggested that the transplanted hUCMSCs contributed to significantly improved pathological changes in the injured spinal cord, as well as motor function, following SCIRI. The protective mechanism correlated with inhibition of cellular apoptosis and reduced production of inflammatory mediators.
文摘Previous studies have shown that vagus nerve stimulation can improve the prognosis of trau- matic brain injury. The aim of this study was to elucidate the mechanism of the neuroprotective effects of vagus nerve stimulation in rabbits with brain explosive injury. Rabbits with brain ex- plosive injury received continuous stimulation (10 V, 5 Hz, 5 ms, 20 minutes) of the right cervical vagus nerve. Tumor necrosis factor-a, interleukin-l~ and interleukin-10 concentrations were detected in serum and brain tissues, and water content in brain tissues was measured. Results showed that vagus nerve stimulation could reduce the degree of brain edema, decrease tumor necrosis factor-a and interleukin-1β concentrations, and increase interleukin-10 concentration after brain explosive injury in rabbits. These data suggest that vagus nerve stimulation may exert neuroprotective effects against explosive injury via regulating the expression of tumor necrosis factor-a, interleukin-1 β and interleukin-10 in the serum and brain tissue.
基金This study was supported by the National Natural Science Foundation of China,Nos.81773474 and 81273110(to BL)the National Key Research and Development Project of China,No.2017YFF0211201(to BL).
文摘Acrylamide has been shown to be neurotoxic.Brain-derived neurotrophic factor(BDNF)can alleviate acrylamide-induced synaptic injury;however,the underlying mechanism remains unclear.In this study,dibutyryl-cyclic adenosine monophosphate-induced mature human neuroblastoma(NB-1)cells were exposed with 0–100μg/mL acrylamide for 24–72 hours.Acrylamide decreased cell viability and destroyed synapses.Exposure of co-cultured NB-1 cells and Schwann cells to 0–100μg/mL acrylamide for 48 hours resulted in upregulated expression of synapsin I and BDNF,suggesting that Schwann cells can activate self-protection of neurons.Under co-culture conditions,activation of the downstream TrkB-MAPK-Erk1/2 pathway strengthened the protective effect.Exogenous BDNF can increase expression of TrkB,Erk1/2,and synapsin I,while exogenous BDNF or the TrkB inhibitor K252a could inhibit these changes.Taken together,Schwann cells may act through the BDNF-TrkB-MAPK-Erk1/2 signaling pathway,indicating that BDNF plays an important role in this process.Therefore,exogenous BDNF may be an effective treatment strategy for acrylamide-induced nerve injury.This study was approved by the Laboratory Animal Welfare and Ethics Committee of the National Institute of Occupational Health and Poison Control,a division of the Chinese Center for Disease Control and Prevention(approval No.EAWE-2017-008)on May 29,2017.
基金the National Natural Science Foundation of China, No.81070957the Natural Science Foundation of Shanxi Province, No.2008011082-1
文摘Astrocytes in an in vitro murine astrocyte model of oxygen and glucose deprivation/hypoxia and reoxygenation were treated with different concentrations of triptolide (250, 500, 1 000 ng/mL) in a broader attempt to elucidate the protection and mechanism underlying triptolide treatment on astrocytes exposed to hypoxia/reoxygenation injury. The results showed that the matrix metalloproteinase-9, interleukin-1β, tumor necrosis factor α and interleukin-6 expressions were significantly decreased after triptolide treatment in the astrocytes exposed to hypoxia/ reoxygenation injury, while interleukin-10 expression was upregulated. In addition, the vitality of the injured astrocytes was enhanced, the triptolide's effect was apparent at 500 ng/mL. These experimental findings indicate that triptolide treatment could protect astrocytes against hypoxia/ reoxygenation injury through the inhibition of inflammatory response and the reduction of matrix metalloproteinase-9 expression.
文摘With the support by the National Natural Science Foundation of China and the Chinese Academy of Sciences,the research team led by Prof.Liu GuangHui(刘光慧)at the CAS National Laboratory of Biomacromolecules,Institute of Biophysics,Chinese Academy of Sciences,generated the world's first genetically enhanced human vascular cells by targeting a single longevity gene,FOXO3.This study was recently published in Cell Stem Cell(2019)as a cover story.
文摘Stroke is the third leading cause of death and the first cause of adult disability in industrial countries [1]. It is charicaterized by hemiplegia, hemianopsia, aphasia, mouth askew and sever sequelae. It is considered that an ischemic disease without any specific treatment method and few effective drugs such as tPA (human tissue-type plasminogen activator) and Edarovone with specific therapeutic window will cause a lot of disadvantages if being used inaccurate. Root of Panax notoginseng (PN) which is one of traditional Chinese medicines (TCMs), was first found in “Shennong’s Classic of Materia Medica” around 200 AD. Panax notogineng saponins(PNS) is a multi-components mixture containing ginseng and saponins as the most important bioactive components which are commonly used in clinical treatment. Also, ginseng and saponins form the main components of many herbal medicines in the market, e.g., Xueshuantong injection [2], Xuesaitong injection [3], Xuesaitong soft capsule [4] and so on. The main monomers of Panax notoginseng saponins (PNS) are Ginsenoside-Rb1, Gensenoside-Rg1, Gensenoside-Re, Gensenoside-Rd and Panax notoginseng saponins-R1 [5]. In this review, we found some important points as well as shortcomings that require special consideration. We therefore highlighted the advances in neuro-protection of PNS and its main monomers in the area of experimental research.
文摘In order to provide a novel and more effective alternative to the commonly used relay protection testing device that outputs only the sinusoidal testing signals, the concept of fault waveform regenerator is proposed in this paper, together with its hardware structure and software flow chart. Fault waveform regenerator mainly depends on its power amplifiers (PAs) to regenerate the fault waveforms recorded by digital fault recorder (DFR). To counteract the PA’s inherent nonlinear distortions, a digital closed-loop modification technique that is different from the predistortion technique is conceived. And the experimental results verify the effectiveness of the fault waveform regenerator based on the digital closed-loop modification technique.