The objective of this study is to quantify the values of greenhouse gases(GHGs) exchange in carbon equivalents of marshes and paddy fields in the Sanjiang Plain,Heilongjiang Province,China. We obtained the GHGs exchan...The objective of this study is to quantify the values of greenhouse gases(GHGs) exchange in carbon equivalents of marshes and paddy fields in the Sanjiang Plain,Heilongjiang Province,China. We obtained the GHGs exchange values based on comparable price by calculating the carbon sequestration values and the GHGs emission values of marshes and paddy fields respectively in four periods of 1982,1995,2000 and 2005. It is noted that the GHGs emission values are always negative. In this study,the marshes areas decreased from 1438977.0 to 775,132.2ha and the paddy fields areas increased from 417195.8 to 934205.0ha. The values of GHGs exchange of marshes varied from 135877.156×106 to 136882.534×106 yuan(RMB) and those of paddy fields varied from 1006.256×106 to 2767.645×106 yuan. The GHGs exchange values of marshes decreased from 1982 to 2005 on the whole,reversely,those of paddy fields increased,but those in 2005 were lower than those in 2000. In different periods,the GHGs exchange values were always higher in marshes than in paddy fields. The contribution rate of GHGs exchange values per unit area of marshes was also very high in different periods,and the maximum was up to 98.35% in 2005. As far as the whole wetland ecosystem(including marshes and paddy fields) ,assuming a linear change in GHGs exchange values,it represented a cumulative increase of 20926.757×106 yuan from 1982 to 2005. By adding GHGs exchange values increased during those four periods,we obtained a cumulative net increase values of GHGs exchange of wetland ecosystem of 18200.860×106 yuan. The results will be useful for understanding the indirect services provided by marshes and paddy fields.展开更多
In earlier works we introduced the Inverse Problem, relative to the Shapley Value, then relative to Semivalues. In the explicit representation of the Inverse Set, the solution set of the Inverse Problem, we built a fa...In earlier works we introduced the Inverse Problem, relative to the Shapley Value, then relative to Semivalues. In the explicit representation of the Inverse Set, the solution set of the Inverse Problem, we built a family of games, called the almost null family, in which we determined more recently a game where the Shapley Value and the Egalitarian Allocations are colalitional rational. The Egalitarian Nonseparable Contribution is another value for cooperative transferable utilities games (TU games), showing how to allocate fairly the win of the grand coalition, in case that this has been formed. In the present paper, we solve the similar problem for this new value: given a nonnegative vector representing the Egalitarian Nonseparable Contribution of a TU game, find out a game in which the Egalitarian Nonseparable Contribution is kept the same, but it is colalitional rational. The new game will belong to the family of almost null games in the Inverse Set, relative to the Shapley Value, and it is proved that the threshold of coalitional rationality will be higher than the one for the Shapley Value. The needed previous results are shown in the introduction, the second section is devoted to the main results, while in the last section are discussed remarks and connected problems. Some numerical examples are illustrating the procedure of finding the new game.展开更多
Efficient agricultural water use is crucial for food safety and water conservation on a global scale. To quantitatively investigate the agricultural water-use efficiency in regions exhibiting the complex agricultural ...Efficient agricultural water use is crucial for food safety and water conservation on a global scale. To quantitatively investigate the agricultural water-use efficiency in regions exhibiting the complex agricultural structure, this study developed an indicator named water footprint of crop values(WFV) that is based on the water footprint of crop production. Defined as the water volume used to produce a unit price of crop(m^3/CNY), the new indicator makes it feasible to directly compare the water footprint of different crops from an economic perspective, so as to comprehensively evaluate the water-use efficiency under the complex planting structure. On the basis of WFV, the study further proposed an indicator of structural water-use coefficient(SWUC), which is represented by the ratio of water-use efficiency for a given planting structure to the water efficiency for a reference crop and can quantitatively describe the impact of planting structure on agricultural water efficiency. Then, a case study was implemented in Xinjiang Uygur Autonomous Region of China. The temporal and spatial variations of WFV were assessed for the planting industries in 14 prefectures and cities of Xinjiang between 1991 and 2015. In addition, contribution rate analysis of WFV for different prefectures and cities was conducted to evaluate the variations of WFV caused by different influencing factors: agricultural input, climatic factors, and planting structure. Results from these analyses indicated first that the average WFV of planting industries in Xinjiang significantly decreased from 0.293 m^3/CNY in 1991 to 0.153 m^3/CNY in 2015, corresponding to an average annual change rate of –3.532%. WFV in 13 prefectures and cities(with the exception of Karamay) has declined significantly during the period of 1991–2015, indicating that agricultural water-use efficient has effectively improved. Second, the average SWUC in Xinjiang decreased from 1.17 to 1.08 m^3/CNY in the 1990 s, and then declined to 1.00 m^3/CNY in 2011–2015. The value of SWUC was highly consistent with the relative value of WFV in most prefectures and cities, showing that planting structure is one of the primary factors affecting regional agricultural water-use efficiency. Third, the contribution rate of WFV variations from human factors including agricultural input and planting structure was much more significant than that from climatic factors. However, the distribution of agricultural input and the adjustment of planting structure significantly differed among prefectures and cities, suggesting regional imbalances of agricultural development. This study indicated the feasibility and effectiveness of controlling agricultural water use through increasing technical input and rational selection of crops in the face of impending climate change. Specifically, we concluded that, the rational application of chemical fertilizers, the development of the fruit industry, and the strict restriction of the cotton industry should be implemented to improve the agricultural water-use efficiency in Xinjiang.展开更多
Agriculture has both economic value and non-economic value. The calculation of the non-economic value of agriculture has become a research hotspot in academic circles. This paper divides the value of agriculture into ...Agriculture has both economic value and non-economic value. The calculation of the non-economic value of agriculture has become a research hotspot in academic circles. This paper divides the value of agriculture into products production value and ecological value, and adopts an authoritative ecological value calculation idea, i.e. the method proposed by Costanza et al. in 1997 as the basis to calculate the ecological value of agriculture. However, the study has come under heavy criticism:for example, some data have major deviation, underestimating the ecological value of cultivated land while overestimating the wetland. XIE Gaodi et al. in 2003 came up with more reliable results to make up for the deifciency of the methods from Costanza et al. Referring to some of the results and on the basis of a questionnaire survey to 200 Chinese ecologists, this paper presented an equivalent factor table for evaluating the ecological service value (ESV) of China’s ecosystem. Based on this table and the practical situation of Tianjin, the paper formulates an applicable calculation method for ecological value and actual y calculates the ecological value of agriculture in Tianjin with ofifcial statistics. The results show that the actual value of the ecological value of agriculture in Tianjin in 2012 was 111.20 bil ion CNY, about triple of the economic value of agriculture (37.56 bil ion CNY) in the same year.展开更多
In the context of enterprise systems,intrusion detection(ID)emerges as a critical element driving the digital transformation of enterprises.With systems spanning various sectors of enterprises geographically dispersed...In the context of enterprise systems,intrusion detection(ID)emerges as a critical element driving the digital transformation of enterprises.With systems spanning various sectors of enterprises geographically dispersed,the necessity for seamless information exchange has surged significantly.The existing cross-domain solutions are challenged by such issues as insufficient security,high communication overhead,and a lack of effective update mechanisms,rendering them less feasible for prolonged application on resource-limited devices.This study proposes a new cross-domain collaboration scheme based on federated chains to streamline the server-side workload.Within this framework,individual nodes solely engage in training local data and subsequently amalgamate the final model employing a federated learning algorithm to uphold enterprise systems with efficiency and security.To curtail the resource utilization of blockchains and deter malicious nodes,a node administration module predicated on the workload paradigm is introduced,enabling the release of surplus resources in response to variations in a node’s contribution metric.Upon encountering an intrusion,the system triggers an alert and logs the characteristics of the breach,facilitating a comprehensive global update across all nodes for collective defense.Experimental results across multiple scenarios have verified the security and effectiveness of the proposed solution,with no loss of its recognition accuracy.展开更多
基金Under the auspices of National Natural Science Foundation of China (No. 40830535)Frontier of Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences (No. KZCX3-SW-NA3-01)
文摘The objective of this study is to quantify the values of greenhouse gases(GHGs) exchange in carbon equivalents of marshes and paddy fields in the Sanjiang Plain,Heilongjiang Province,China. We obtained the GHGs exchange values based on comparable price by calculating the carbon sequestration values and the GHGs emission values of marshes and paddy fields respectively in four periods of 1982,1995,2000 and 2005. It is noted that the GHGs emission values are always negative. In this study,the marshes areas decreased from 1438977.0 to 775,132.2ha and the paddy fields areas increased from 417195.8 to 934205.0ha. The values of GHGs exchange of marshes varied from 135877.156×106 to 136882.534×106 yuan(RMB) and those of paddy fields varied from 1006.256×106 to 2767.645×106 yuan. The GHGs exchange values of marshes decreased from 1982 to 2005 on the whole,reversely,those of paddy fields increased,but those in 2005 were lower than those in 2000. In different periods,the GHGs exchange values were always higher in marshes than in paddy fields. The contribution rate of GHGs exchange values per unit area of marshes was also very high in different periods,and the maximum was up to 98.35% in 2005. As far as the whole wetland ecosystem(including marshes and paddy fields) ,assuming a linear change in GHGs exchange values,it represented a cumulative increase of 20926.757×106 yuan from 1982 to 2005. By adding GHGs exchange values increased during those four periods,we obtained a cumulative net increase values of GHGs exchange of wetland ecosystem of 18200.860×106 yuan. The results will be useful for understanding the indirect services provided by marshes and paddy fields.
文摘In earlier works we introduced the Inverse Problem, relative to the Shapley Value, then relative to Semivalues. In the explicit representation of the Inverse Set, the solution set of the Inverse Problem, we built a family of games, called the almost null family, in which we determined more recently a game where the Shapley Value and the Egalitarian Allocations are colalitional rational. The Egalitarian Nonseparable Contribution is another value for cooperative transferable utilities games (TU games), showing how to allocate fairly the win of the grand coalition, in case that this has been formed. In the present paper, we solve the similar problem for this new value: given a nonnegative vector representing the Egalitarian Nonseparable Contribution of a TU game, find out a game in which the Egalitarian Nonseparable Contribution is kept the same, but it is colalitional rational. The new game will belong to the family of almost null games in the Inverse Set, relative to the Shapley Value, and it is proved that the threshold of coalitional rationality will be higher than the one for the Shapley Value. The needed previous results are shown in the introduction, the second section is devoted to the main results, while in the last section are discussed remarks and connected problems. Some numerical examples are illustrating the procedure of finding the new game.
基金supported by the National Key Technology Research and Development Program of China (2017YFC0404301, 2016YFA0601602)the National Natural Science Foundation of China (51479209)+1 种基金the Application Foundation Research Project of Xinjiang Production and Construction Corps (2016AG003)the Talent Initiate Scientific Research Project (RCZX2015027)。
文摘Efficient agricultural water use is crucial for food safety and water conservation on a global scale. To quantitatively investigate the agricultural water-use efficiency in regions exhibiting the complex agricultural structure, this study developed an indicator named water footprint of crop values(WFV) that is based on the water footprint of crop production. Defined as the water volume used to produce a unit price of crop(m^3/CNY), the new indicator makes it feasible to directly compare the water footprint of different crops from an economic perspective, so as to comprehensively evaluate the water-use efficiency under the complex planting structure. On the basis of WFV, the study further proposed an indicator of structural water-use coefficient(SWUC), which is represented by the ratio of water-use efficiency for a given planting structure to the water efficiency for a reference crop and can quantitatively describe the impact of planting structure on agricultural water efficiency. Then, a case study was implemented in Xinjiang Uygur Autonomous Region of China. The temporal and spatial variations of WFV were assessed for the planting industries in 14 prefectures and cities of Xinjiang between 1991 and 2015. In addition, contribution rate analysis of WFV for different prefectures and cities was conducted to evaluate the variations of WFV caused by different influencing factors: agricultural input, climatic factors, and planting structure. Results from these analyses indicated first that the average WFV of planting industries in Xinjiang significantly decreased from 0.293 m^3/CNY in 1991 to 0.153 m^3/CNY in 2015, corresponding to an average annual change rate of –3.532%. WFV in 13 prefectures and cities(with the exception of Karamay) has declined significantly during the period of 1991–2015, indicating that agricultural water-use efficient has effectively improved. Second, the average SWUC in Xinjiang decreased from 1.17 to 1.08 m^3/CNY in the 1990 s, and then declined to 1.00 m^3/CNY in 2011–2015. The value of SWUC was highly consistent with the relative value of WFV in most prefectures and cities, showing that planting structure is one of the primary factors affecting regional agricultural water-use efficiency. Third, the contribution rate of WFV variations from human factors including agricultural input and planting structure was much more significant than that from climatic factors. However, the distribution of agricultural input and the adjustment of planting structure significantly differed among prefectures and cities, suggesting regional imbalances of agricultural development. This study indicated the feasibility and effectiveness of controlling agricultural water use through increasing technical input and rational selection of crops in the face of impending climate change. Specifically, we concluded that, the rational application of chemical fertilizers, the development of the fruit industry, and the strict restriction of the cotton industry should be implemented to improve the agricultural water-use efficiency in Xinjiang.
基金National Natural Science Foundation of China(71303227)National Philosophy and Social Science Foundation of China(11CJY050)Postdoctoral Science Foundation of China(2013M530719)
文摘Agriculture has both economic value and non-economic value. The calculation of the non-economic value of agriculture has become a research hotspot in academic circles. This paper divides the value of agriculture into products production value and ecological value, and adopts an authoritative ecological value calculation idea, i.e. the method proposed by Costanza et al. in 1997 as the basis to calculate the ecological value of agriculture. However, the study has come under heavy criticism:for example, some data have major deviation, underestimating the ecological value of cultivated land while overestimating the wetland. XIE Gaodi et al. in 2003 came up with more reliable results to make up for the deifciency of the methods from Costanza et al. Referring to some of the results and on the basis of a questionnaire survey to 200 Chinese ecologists, this paper presented an equivalent factor table for evaluating the ecological service value (ESV) of China’s ecosystem. Based on this table and the practical situation of Tianjin, the paper formulates an applicable calculation method for ecological value and actual y calculates the ecological value of agriculture in Tianjin with ofifcial statistics. The results show that the actual value of the ecological value of agriculture in Tianjin in 2012 was 111.20 bil ion CNY, about triple of the economic value of agriculture (37.56 bil ion CNY) in the same year.
基金supported by the Project of National Natural Science Foundation of China under the grant titled“Research on Intermittent Fault Diagnosis of New Interconnection Networks under Comparative Model”(Approval Number:61862003).
文摘In the context of enterprise systems,intrusion detection(ID)emerges as a critical element driving the digital transformation of enterprises.With systems spanning various sectors of enterprises geographically dispersed,the necessity for seamless information exchange has surged significantly.The existing cross-domain solutions are challenged by such issues as insufficient security,high communication overhead,and a lack of effective update mechanisms,rendering them less feasible for prolonged application on resource-limited devices.This study proposes a new cross-domain collaboration scheme based on federated chains to streamline the server-side workload.Within this framework,individual nodes solely engage in training local data and subsequently amalgamate the final model employing a federated learning algorithm to uphold enterprise systems with efficiency and security.To curtail the resource utilization of blockchains and deter malicious nodes,a node administration module predicated on the workload paradigm is introduced,enabling the release of surplus resources in response to variations in a node’s contribution metric.Upon encountering an intrusion,the system triggers an alert and logs the characteristics of the breach,facilitating a comprehensive global update across all nodes for collective defense.Experimental results across multiple scenarios have verified the security and effectiveness of the proposed solution,with no loss of its recognition accuracy.