Building on a new model proposed recently for calculating constant electro-magnetic field values, the present article explores the electro-magnetic field configuration generated by parallel electrical wires. This impo...Building on a new model proposed recently for calculating constant electro-magnetic field values, the present article explores the electro-magnetic field configuration generated by parallel electrical wires. This imposes a reevaluation of the drawing procedure for constructing field curves with a constant field values around multiple parallel electrical conducting wires. To achieve this, we employ methods akin to those used for creating contours on topographical maps, ensuring a consistent numerical field value along the entire length of the field curves. Subsequent calculations will be conducted for scenarios where wires are not parallel.展开更多
This article is based on a recent model specifically defining magnetic field values around electrical wires. With this model, calculations of field around parallel wires were obtained. Now, this model is extended with...This article is based on a recent model specifically defining magnetic field values around electrical wires. With this model, calculations of field around parallel wires were obtained. Now, this model is extended with the new concept of magnetic equipotential surface to magnetic field curves around crossing wires. Cases of single, double, and triple wires are described. Subsequent article will be conducted for more general scenarios where wires are neither infinite nor parallel.展开更多
The electrodynamic characteristics of single DNA molecules moving within micro-/nano-fluidic channels are important in the design of biomedical chips and bimolecular sensors. In this study, the dynamic properties of ...The electrodynamic characteristics of single DNA molecules moving within micro-/nano-fluidic channels are important in the design of biomedical chips and bimolecular sensors. In this study, the dynamic properties of λ-DNA molecules transferring along the microchannels driven by the external electrickinetic force were systemically investigated with the single molecule fluorescence imaging technique. The experimental results indicated that the velocity of DNA molecules was strictly dependent on the value of the applied electric field and the diameter of the channel. The larger the external electric field, the larger the velocity, and the more significant deformation of DNA molecules. More meaningfully, it was found that the moving directions of DNA molecules had two completely different directions:(i) along the direction of the external electric field, when the electric field intensity was smaller than a certain threshold value;(ii) opposite to the direction of the external electric field, when the electric field intensity was greater than the threshold electric field intensity.The reversal movement of DNA molecules was mainly determined by the competition between the electrophoresis force and the influence of electro-osmosis flow. These new findings will theoretically guide the practical application of fluidic channel sensors and lab-on-chips for precisely manipulating single DNA molecules.展开更多
This article originates from the observation that field lines are drawn using distinctive rules in magnetic field and electrostatic fields. It aims at reconciliating the definitions of these fields and thus reaching a...This article originates from the observation that field lines are drawn using distinctive rules in magnetic field and electrostatic fields. It aims at reconciliating the definitions of these fields and thus reaching a consensus on the interpretation of field lines. Our unified field definition combines three orthogonal vectors and a unique scalar value. Field lines are then defined as isovalue lines of the scalar value, rendering it simpler to interpret in both field types. Specific to our field definition is the use of square root of vector’s cross product so that all vectors have the same physical unit. This enhanced field definition also enables a more efficient calculation of Biot-Savart law. This article is the first of a series allowing the drawing of isovalue contour lines.展开更多
Theory of uncertainty reasoning base on l-module of true value field,in this paper,an extended l-module was proposed,some properties and lattice measure were discussed,then the lattice integral on l-module was gained.
The problem of state feedback controllers for a class of Takagi-Sugeno (T-S) Lipschitz nonlinear systems is investigated. A simple systematic and useful synthesis method is proposed based on the use of the different...The problem of state feedback controllers for a class of Takagi-Sugeno (T-S) Lipschitz nonlinear systems is investigated. A simple systematic and useful synthesis method is proposed based on the use of the differential mean value theorem (DMVT) and convex theory. The proposed design approach is based on the mean value theorem (MVT) to express the nonlinear error dynamics as a convex combination of known matrices with time varying coefficients as linear parameter varying (LPV) systems. Using the Lyapunov theory, stability conditions are obtained and expressed in terms of linear matrix inequalities (LMIs). The controller gains are then obtained by solving linear matrix inequalities. The effectiveness of the proposed approach for closed loop-field oriented control (CL-FOC) of permanent magnet synchronous machine (PMSM) drives is demonstrated through an illustrative simulation for the proof of these approaches. Furthermore, an extension for controller design with parameter uncertainties and perturbation performance is discussed.展开更多
文摘Building on a new model proposed recently for calculating constant electro-magnetic field values, the present article explores the electro-magnetic field configuration generated by parallel electrical wires. This imposes a reevaluation of the drawing procedure for constructing field curves with a constant field values around multiple parallel electrical conducting wires. To achieve this, we employ methods akin to those used for creating contours on topographical maps, ensuring a consistent numerical field value along the entire length of the field curves. Subsequent calculations will be conducted for scenarios where wires are not parallel.
文摘This article is based on a recent model specifically defining magnetic field values around electrical wires. With this model, calculations of field around parallel wires were obtained. Now, this model is extended with the new concept of magnetic equipotential surface to magnetic field curves around crossing wires. Cases of single, double, and triple wires are described. Subsequent article will be conducted for more general scenarios where wires are neither infinite nor parallel.
基金Project supported by the National Natural Science Foundation of China(Grant No.61378083)the International Cooperation Foundation of the National Science and Technology Major Project of the Ministry of Science and Technology of China(Grant No.2011DFA12220)+1 种基金the Major Research Plan of National Natural Science Foundation of China(Grant No.91123030)the Natural Science Foundation of Shaanxi Province of China(Grant Nos.2010JS110 and2013SZS03-Z01)
文摘The electrodynamic characteristics of single DNA molecules moving within micro-/nano-fluidic channels are important in the design of biomedical chips and bimolecular sensors. In this study, the dynamic properties of λ-DNA molecules transferring along the microchannels driven by the external electrickinetic force were systemically investigated with the single molecule fluorescence imaging technique. The experimental results indicated that the velocity of DNA molecules was strictly dependent on the value of the applied electric field and the diameter of the channel. The larger the external electric field, the larger the velocity, and the more significant deformation of DNA molecules. More meaningfully, it was found that the moving directions of DNA molecules had two completely different directions:(i) along the direction of the external electric field, when the electric field intensity was smaller than a certain threshold value;(ii) opposite to the direction of the external electric field, when the electric field intensity was greater than the threshold electric field intensity.The reversal movement of DNA molecules was mainly determined by the competition between the electrophoresis force and the influence of electro-osmosis flow. These new findings will theoretically guide the practical application of fluidic channel sensors and lab-on-chips for precisely manipulating single DNA molecules.
文摘This article originates from the observation that field lines are drawn using distinctive rules in magnetic field and electrostatic fields. It aims at reconciliating the definitions of these fields and thus reaching a consensus on the interpretation of field lines. Our unified field definition combines three orthogonal vectors and a unique scalar value. Field lines are then defined as isovalue lines of the scalar value, rendering it simpler to interpret in both field types. Specific to our field definition is the use of square root of vector’s cross product so that all vectors have the same physical unit. This enhanced field definition also enables a more efficient calculation of Biot-Savart law. This article is the first of a series allowing the drawing of isovalue contour lines.
基金Supported by NSF of the Education Department of Henan Province(2009A110017)
文摘Theory of uncertainty reasoning base on l-module of true value field,in this paper,an extended l-module was proposed,some properties and lattice measure were discussed,then the lattice integral on l-module was gained.
文摘The problem of state feedback controllers for a class of Takagi-Sugeno (T-S) Lipschitz nonlinear systems is investigated. A simple systematic and useful synthesis method is proposed based on the use of the differential mean value theorem (DMVT) and convex theory. The proposed design approach is based on the mean value theorem (MVT) to express the nonlinear error dynamics as a convex combination of known matrices with time varying coefficients as linear parameter varying (LPV) systems. Using the Lyapunov theory, stability conditions are obtained and expressed in terms of linear matrix inequalities (LMIs). The controller gains are then obtained by solving linear matrix inequalities. The effectiveness of the proposed approach for closed loop-field oriented control (CL-FOC) of permanent magnet synchronous machine (PMSM) drives is demonstrated through an illustrative simulation for the proof of these approaches. Furthermore, an extension for controller design with parameter uncertainties and perturbation performance is discussed.