This paper is concerned with the following fourth-order three-point boundary value problem , where , we discuss the existence of positive solutions to the above problem by applying to the fixed point theory in cones a...This paper is concerned with the following fourth-order three-point boundary value problem , where , we discuss the existence of positive solutions to the above problem by applying to the fixed point theory in cones and iterative technique.展开更多
The present paper is concerned with the existence of positive solutions of the (k,n-k) conjugate boundary value problems(-1) n-k u (h) (t)=λa(t)f(u(t)),t∈(0,1), u (i) (0)=0,0≤i≤k-1, u (j) (0)=0,0...The present paper is concerned with the existence of positive solutions of the (k,n-k) conjugate boundary value problems(-1) n-k u (h) (t)=λa(t)f(u(t)),t∈(0,1), u (i) (0)=0,0≤i≤k-1, u (j) (0)=0,0≤j≤n-k-1,where λ is a positive parmeter. Krasnoselsii’s fixed point theorem is employed to obtain the existence criteria for positive solution.展开更多
The authors study the existence of positive solutions to the boundary value problem where f and e: [r,R] x [0,∞) → R are two continuous functions satisfying f 0 and |e| M for some M > 0. The authors show that...The authors study the existence of positive solutions to the boundary value problem where f and e: [r,R] x [0,∞) → R are two continuous functions satisfying f 0 and |e| M for some M > 0. The authors show that there exists at least one positive solution in the following two cases: (i) f is superlinear at infinity and λ > 0 is small enough; (ii) f is sublinear at infinity and λ > 0 is large enough. Their proofs are based on fixed point theorems in cones.展开更多
In this paper, the existence and uniqueness of solutions for boundary valueproblem x′′′=f(t, x, x′, x″), x(0)=A, x′(0)=B, g(x′(1), x″(1))=0 are studied byusing Volterra type operator and upper and lower soluti...In this paper, the existence and uniqueness of solutions for boundary valueproblem x′′′=f(t, x, x′, x″), x(0)=A, x′(0)=B, g(x′(1), x″(1))=0 are studied byusing Volterra type operator and upper and lower solutions. Our results improve someknown works.展开更多
This article considers the existence of solution for a boundary value problem of fractional order, involving Caputo's derivative{C0D^δtu(t)=g(t,u(t)),0〈t〈1,1〈δ〈2,u(0)α≠0,u(1)=β≠0.
Studies the existence of solutions of nonlinear two point boundary value problems for nonlinear 4n-th-order differential equationy (4n)=f(t,y,y′,y″,...,y (4n-1))(a)with the boundary conditions g 2i(y (2i)(a),y (2i+1...Studies the existence of solutions of nonlinear two point boundary value problems for nonlinear 4n-th-order differential equationy (4n)=f(t,y,y′,y″,...,y (4n-1))(a)with the boundary conditions g 2i(y (2i)(a),y (2i+1)(a))=0,h 2i(y (2i)(c),y (2i+1)(c))=0,(i=0,1,...,2n-1)(b) where the functions f, g i and h i are continuous with certain monotone properties. For the boundary value problems of nonlinear nth order differential equationy (n)=f(t,y,y′,y″,...,y (n-1))many results have been given at the present time. But the existence of solutions of boundary value problem (a),(b) studied in this paper has not been covered by the above researches. Moreover, the corollary of the important theorem in this paper, i.e. existence of solutions of the boundary value problem.y (4n)=f(t,y,y′,y″,...,y (4n-1)) a 2iy (2i)(a)+a 2i+1y (2i+1)(a)=b 2i,c 2iy (2i)(c)+c 2i+1y (2i+1)(c)=d 2i,(i=0,1,...2n-1)has not been dealt with in previous works.展开更多
The existence of nondecreasing positive solutions for the nonlinear third-order twopoint boundary value problem u′″(t) + q(t)f(t,u(t),u′(t)) = 0, 0 〈 t 〈 1, u(0) = u″(0) = u′(1) = 0 is studied....The existence of nondecreasing positive solutions for the nonlinear third-order twopoint boundary value problem u′″(t) + q(t)f(t,u(t),u′(t)) = 0, 0 〈 t 〈 1, u(0) = u″(0) = u′(1) = 0 is studied. The iterative schemes for approximating the solutions are obtained by applying a monotone iterative method.展开更多
This paper is concerned with the free boundary value problem for multidimensional Navier-Stokes equations with density-dependent viscosity where the flow density vanishes continuously across the free boundary. Local ...This paper is concerned with the free boundary value problem for multidimensional Navier-Stokes equations with density-dependent viscosity where the flow density vanishes continuously across the free boundary. Local (in time) existence of a weak solution is established; in particular, the density is positive and the solution is regular away from the free boundary.展开更多
We study boundary value problems for fractional integro-differential equations involving Caputo derivative of order α∈ (n-1, n) in Banach spaces. Existence and uniqueness results of solutions are established by vi...We study boundary value problems for fractional integro-differential equations involving Caputo derivative of order α∈ (n-1, n) in Banach spaces. Existence and uniqueness results of solutions are established by virtue of the Holder's inequality, a suitable singular Cronwall's inequality and fixed point theorem via a priori estimate method. At last, examples are given to illustrate the results.展开更多
In this paper, the existence and uniqueness theorems of solutions of k-point boundary value problems for nth-order nonlinear differential equations are established by Leray-Schauder continuation theorem.
An existence theorem of positive solution is established for a nonlinear third-order three-point boundary value problem. Here, we concentrated on the case that the nonlinear term is neither superlinear nor sublinear, ...An existence theorem of positive solution is established for a nonlinear third-order three-point boundary value problem. Here, we concentrated on the case that the nonlinear term is neither superlinear nor sublinear, and is not asymptotic at zero and infinity.展开更多
In this paper we present some new existence results for singular boundary value problems by Arzela-Ascoli theorem. In particular our nonlinearity may be singular in its dependent variable.
By fixed point theorem of a mixed monotone operators, we study Lidstone boundary value problems to nonlinear singular 2mth-order differential and difference equations, and provide sufficient conditions for the existen...By fixed point theorem of a mixed monotone operators, we study Lidstone boundary value problems to nonlinear singular 2mth-order differential and difference equations, and provide sufficient conditions for the existence and uniqueness of positive solution to Lidstone boundary value problem for 2mth-order ordinary differential equations and 2mth-order difference equations. The nonlinear term in the differential and difference equation may be singular.展开更多
This paper is concerned with the boundary value problem of a nonlinear fractional differential equation. By means of Schauder fixed-point theorem, an existence result of solution is obtained.
This paper deals with the existence of positive solutions of the equation u'+f(t, u)=0 with linear boundary conditions. We show the existence of at least one positive solution if / is neither superlinear nor subli...This paper deals with the existence of positive solutions of the equation u'+f(t, u)=0 with linear boundary conditions. We show the existence of at least one positive solution if / is neither superlinear nor sublinear on u by a simple application of a fixed point Theorem in cones.展开更多
The author considers the global existence and global nonexistence of the initial-boundary value problem for some degenerate hyperbolic equation of the form utt- div(|△↓|^P-2 △↓u)=|u|^m u, (x,t)∈[0, +∞)...The author considers the global existence and global nonexistence of the initial-boundary value problem for some degenerate hyperbolic equation of the form utt- div(|△↓|^P-2 △↓u)=|u|^m u, (x,t)∈[0, +∞) ×Ω with p 〉 2 and m 〉 0. He deals with the global solutions by D.H.Sattinger's potential well ideas. At the same time, when the initial energy is positive, but appropriately bounded, the global nonexistence of solutions is verified by using the analysis method.展开更多
By constructing suitable Banach space, an existence theorem is established under a condition of linear growth for the third-order boundary value problem u″′(t)+f(t,u(t),u′(t))=0,0〈t〈1,u(0)=u′(0)=u′...By constructing suitable Banach space, an existence theorem is established under a condition of linear growth for the third-order boundary value problem u″′(t)+f(t,u(t),u′(t))=0,0〈t〈1,u(0)=u′(0)=u′(1)=0, where the nonlinear term contains first and second derivatives of unknown function. In this theorem the nonlinear term f(t, u, v, w) may be singular at t = 0 and t = 1. The main ingredient is Leray-Schauder nonlinear alternative.展开更多
The present paper tackles two-point boundary value problems for fourth-order differential equations as follows:Several existence theorems on multiple positive solutions to the problems are obtained, and some examples ...The present paper tackles two-point boundary value problems for fourth-order differential equations as follows:Several existence theorems on multiple positive solutions to the problems are obtained, and some examples are given to show the validity of these results.展开更多
The nonlinear interactions between the monochromatic wave have been considered by K. Matsunchi, who also proposed one class of the nonlinear Schrdinger equation system with wave operator. We also obtain the same type ...The nonlinear interactions between the monochromatic wave have been considered by K. Matsunchi, who also proposed one class of the nonlinear Schrdinger equation system with wave operator. We also obtain the same type of equations, which are satisfied by transverse velocity of higher frequency electron, as we study soliton in plasma physics. In this paper, under some condition we study the existence and nonexistence for this equations in the cases possessing different signs in nonlinear term.展开更多
文摘This paper is concerned with the following fourth-order three-point boundary value problem , where , we discuss the existence of positive solutions to the above problem by applying to the fixed point theory in cones and iterative technique.
文摘The present paper is concerned with the existence of positive solutions of the (k,n-k) conjugate boundary value problems(-1) n-k u (h) (t)=λa(t)f(u(t)),t∈(0,1), u (i) (0)=0,0≤i≤k-1, u (j) (0)=0,0≤j≤n-k-1,where λ is a positive parmeter. Krasnoselsii’s fixed point theorem is employed to obtain the existence criteria for positive solution.
基金Supported by Natural Science Foundation of ChinaFoundation of Key Teacher of University of Education Ministry
文摘The authors study the existence of positive solutions to the boundary value problem where f and e: [r,R] x [0,∞) → R are two continuous functions satisfying f 0 and |e| M for some M > 0. The authors show that there exists at least one positive solution in the following two cases: (i) f is superlinear at infinity and λ > 0 is small enough; (ii) f is sublinear at infinity and λ > 0 is large enough. Their proofs are based on fixed point theorems in cones.
文摘In this paper, the existence and uniqueness of solutions for boundary valueproblem x′′′=f(t, x, x′, x″), x(0)=A, x′(0)=B, g(x′(1), x″(1))=0 are studied byusing Volterra type operator and upper and lower solutions. Our results improve someknown works.
基金Supported by the National 973-Project from MOST and Trans-Century Training Programme Foundation for the Talents by Ministry of Education and the Postdoctoral Foundation of China.
文摘This article considers the existence of solution for a boundary value problem of fractional order, involving Caputo's derivative{C0D^δtu(t)=g(t,u(t)),0〈t〈1,1〈δ〈2,u(0)α≠0,u(1)=β≠0.
文摘Studies the existence of solutions of nonlinear two point boundary value problems for nonlinear 4n-th-order differential equationy (4n)=f(t,y,y′,y″,...,y (4n-1))(a)with the boundary conditions g 2i(y (2i)(a),y (2i+1)(a))=0,h 2i(y (2i)(c),y (2i+1)(c))=0,(i=0,1,...,2n-1)(b) where the functions f, g i and h i are continuous with certain monotone properties. For the boundary value problems of nonlinear nth order differential equationy (n)=f(t,y,y′,y″,...,y (n-1))many results have been given at the present time. But the existence of solutions of boundary value problem (a),(b) studied in this paper has not been covered by the above researches. Moreover, the corollary of the important theorem in this paper, i.e. existence of solutions of the boundary value problem.y (4n)=f(t,y,y′,y″,...,y (4n-1)) a 2iy (2i)(a)+a 2i+1y (2i+1)(a)=b 2i,c 2iy (2i)(c)+c 2i+1y (2i+1)(c)=d 2i,(i=0,1,...2n-1)has not been dealt with in previous works.
基金Supported by the Natural Science Foundation of Zhejiang Province (Y605144)the XNF of Zhejiang University of Media and Communications (XN080012008034)
文摘The existence of nondecreasing positive solutions for the nonlinear third-order twopoint boundary value problem u′″(t) + q(t)f(t,u(t),u′(t)) = 0, 0 〈 t 〈 1, u(0) = u″(0) = u′(1) = 0 is studied. The iterative schemes for approximating the solutions are obtained by applying a monotone iterative method.
基金partially supported by the NSFC(10871134)the AHRDIHL Project of Beijing Municipality (PHR201006107)
文摘This paper is concerned with the free boundary value problem for multidimensional Navier-Stokes equations with density-dependent viscosity where the flow density vanishes continuously across the free boundary. Local (in time) existence of a weak solution is established; in particular, the density is positive and the solution is regular away from the free boundary.
基金supported by Grant In Aid research fund of Virginia Military Instittue, USA
文摘We study boundary value problems for fractional integro-differential equations involving Caputo derivative of order α∈ (n-1, n) in Banach spaces. Existence and uniqueness results of solutions are established by virtue of the Holder's inequality, a suitable singular Cronwall's inequality and fixed point theorem via a priori estimate method. At last, examples are given to illustrate the results.
文摘In this paper, the existence and uniqueness theorems of solutions of k-point boundary value problems for nth-order nonlinear differential equations are established by Leray-Schauder continuation theorem.
文摘An existence theorem of positive solution is established for a nonlinear third-order three-point boundary value problem. Here, we concentrated on the case that the nonlinear term is neither superlinear nor sublinear, and is not asymptotic at zero and infinity.
文摘In this paper we present some new existence results for singular boundary value problems by Arzela-Ascoli theorem. In particular our nonlinearity may be singular in its dependent variable.
基金supported by Scientific Research Fund of Heilongjiang Provincial Education Department (11544032)the National Natural Science Foundation of China (10571021, 10701020)
文摘By fixed point theorem of a mixed monotone operators, we study Lidstone boundary value problems to nonlinear singular 2mth-order differential and difference equations, and provide sufficient conditions for the existence and uniqueness of positive solution to Lidstone boundary value problem for 2mth-order ordinary differential equations and 2mth-order difference equations. The nonlinear term in the differential and difference equation may be singular.
文摘This paper is concerned with the boundary value problem of a nonlinear fractional differential equation. By means of Schauder fixed-point theorem, an existence result of solution is obtained.
文摘This paper deals with the existence of positive solutions of the equation u'+f(t, u)=0 with linear boundary conditions. We show the existence of at least one positive solution if / is neither superlinear nor sublinear on u by a simple application of a fixed point Theorem in cones.
文摘The author considers the global existence and global nonexistence of the initial-boundary value problem for some degenerate hyperbolic equation of the form utt- div(|△↓|^P-2 △↓u)=|u|^m u, (x,t)∈[0, +∞) ×Ω with p 〉 2 and m 〉 0. He deals with the global solutions by D.H.Sattinger's potential well ideas. At the same time, when the initial energy is positive, but appropriately bounded, the global nonexistence of solutions is verified by using the analysis method.
文摘By constructing suitable Banach space, an existence theorem is established under a condition of linear growth for the third-order boundary value problem u″′(t)+f(t,u(t),u′(t))=0,0〈t〈1,u(0)=u′(0)=u′(1)=0, where the nonlinear term contains first and second derivatives of unknown function. In this theorem the nonlinear term f(t, u, v, w) may be singular at t = 0 and t = 1. The main ingredient is Leray-Schauder nonlinear alternative.
基金The Postdoctoral Science Research Foundation of Zhengzhou University.
文摘The present paper tackles two-point boundary value problems for fourth-order differential equations as follows:Several existence theorems on multiple positive solutions to the problems are obtained, and some examples are given to show the validity of these results.
文摘The nonlinear interactions between the monochromatic wave have been considered by K. Matsunchi, who also proposed one class of the nonlinear Schrdinger equation system with wave operator. We also obtain the same type of equations, which are satisfied by transverse velocity of higher frequency electron, as we study soliton in plasma physics. In this paper, under some condition we study the existence and nonexistence for this equations in the cases possessing different signs in nonlinear term.