This paper considers the regularity of solutions to mixed boundary value problems in small-angle regions for elliptic equations. By constructing a specific barrier function, we proved that under the assumption of suff...This paper considers the regularity of solutions to mixed boundary value problems in small-angle regions for elliptic equations. By constructing a specific barrier function, we proved that under the assumption of sufficient regularity of boundary conditions and coefficients, as long as the angle is sufficiently small, the regularity of the solution to the mixed boundary value problem of the second-order elliptic equation can reach any order.展开更多
In this study,a wavelet multi-resolution interpolation Galerkin method(WMIGM)is proposed to solve linear singularly perturbed boundary value problems.Unlike conventional wavelet schemes,the proposed algorithm can be r...In this study,a wavelet multi-resolution interpolation Galerkin method(WMIGM)is proposed to solve linear singularly perturbed boundary value problems.Unlike conventional wavelet schemes,the proposed algorithm can be readily extended to special node generation techniques,such as the Shishkin node.Such a wavelet method allows a high degree of local refinement of the nodal distribution to efficiently capture localized steep gradients.All the shape functions possess the Kronecker delta property,making the imposition of boundary conditions as easy as that in the finite element method.Four numerical examples are studied to demonstrate the validity and accuracy of the proposedwavelet method.The results showthat the use ofmodified Shishkin nodes can significantly reduce numerical oscillation near the boundary layer.Compared with many other methods,the proposed method possesses satisfactory accuracy and efficiency.The theoretical and numerical results demonstrate that the order of theε-uniform convergence of this wavelet method can reach 5.展开更多
Accurately approximating higher order derivatives is an inherently difficult problem. It is shown that a random variable shape parameter strategy can improve the accuracy of approximating higher order derivatives with...Accurately approximating higher order derivatives is an inherently difficult problem. It is shown that a random variable shape parameter strategy can improve the accuracy of approximating higher order derivatives with Radial Basis Function methods. The method is used to solve fourth order boundary value problems. The use and location of ghost points are examined in order to enforce the extra boundary conditions that are necessary to make a fourth-order problem well posed. The use of ghost points versus solving an overdetermined linear system via least squares is studied. For a general fourth-order boundary value problem, the recommended approach is to either use one of two novel sets of ghost centers introduced here or else to use a least squares approach. When using either ghost centers or least squares, the random variable shape parameter strategy results in significantly better accuracy than when a constant shape parameter is used.展开更多
The boundary value problem plays a crucial role in the analytical investigation of continuum dynamics. In this paper, an analytical method based on the Dirac operator to solve the nonlinear and non-homogeneous boundar...The boundary value problem plays a crucial role in the analytical investigation of continuum dynamics. In this paper, an analytical method based on the Dirac operator to solve the nonlinear and non-homogeneous boundary value problem of rectangular plates is proposed. The key concept behind this method is to transform the nonlinear or non-homogeneous part on the boundary into a lateral force within the governing function by the Dirac operator, which linearizes and homogenizes the original boundary, allowing one to employ the modal superposition method for obtaining solutions to reconstructive governing equations. Once projected into the modal space, the harmonic balance method(HBM) is utilized to solve coupled ordinary differential equations(ODEs)of truncated systems with nonlinearity. To validate the convergence and accuracy of the proposed Dirac method, the results of typical examples, involving nonlinearly restricted boundaries, moment excitation, and displacement excitation, are compared with those of the differential quadrature element method(DQEM). The results demonstrate that when dealing with nonlinear boundaries, the Dirac method exhibits more excellent accuracy and convergence compared with the DQEM. However, when facing displacement excitation, there exist some discrepancies between the proposed approach and simulations;nevertheless, the proposed method still accurately predicts resonant frequencies while being uniquely capable of handling nonuniform displacement excitations. Overall, this methodology offers a convenient way for addressing nonlinear and non-homogenous plate boundaries.展开更多
We study boundary value problems for fractional integro-differential equations involving Caputo derivative of order α∈ (n-1, n) in Banach spaces. Existence and uniqueness results of solutions are established by vi...We study boundary value problems for fractional integro-differential equations involving Caputo derivative of order α∈ (n-1, n) in Banach spaces. Existence and uniqueness results of solutions are established by virtue of the Holder's inequality, a suitable singular Cronwall's inequality and fixed point theorem via a priori estimate method. At last, examples are given to illustrate the results.展开更多
In this paper, the so-called Riemann-Hilbert compound boundary value problems for hyperanalytic functions are considered, include the compound value problems for simply connected regions and open arcs, we get these so...In this paper, the so-called Riemann-Hilbert compound boundary value problems for hyperanalytic functions are considered, include the compound value problems for simply connected regions and open arcs, we get these solutions.展开更多
The existence of multiple positive solutions for a class of higher order p Laplacian boundary value problem is studied. By means of the Leggett Williams fixed point theorem in cones, existence criteria which e...The existence of multiple positive solutions for a class of higher order p Laplacian boundary value problem is studied. By means of the Leggett Williams fixed point theorem in cones, existence criteria which ensure the existence of at least three positive solutions of the boundary value problem are established.展开更多
The singularly perturbed elliptic equation boundary value problem with turning point is considered. Using the method of multiple scales and the comparison theorem, the asymptotic behavior of solution for the boundary ...The singularly perturbed elliptic equation boundary value problem with turning point is considered. Using the method of multiple scales and the comparison theorem, the asymptotic behavior of solution for the boundary value problem is studied.展开更多
By using fixed-point index theory,we study boundary value problems for systems of nonlinear second-order differential equation,and a result on existence and multiplicity of positive solutions is obtained.
New existence results are presented for the singular second-order nonlinear boundary value problems u ' + g(t)f(u) = 0, 0 < t < 1, au(0) - betau ' (0) = 0, gammau(1) + deltau ' (1) = 0 under the cond...New existence results are presented for the singular second-order nonlinear boundary value problems u ' + g(t)f(u) = 0, 0 < t < 1, au(0) - betau ' (0) = 0, gammau(1) + deltau ' (1) = 0 under the conditions 0 less than or equal to f(0)(+) < M-1, m(1) < f(infinity)(-)less than or equal to infinity or 0 less than or equal to f(infinity)(+)< M-1, m(1) < f (-)(0)less than or equal to infinity where f(0)(+) = lim(u -->0)f(u)/u, f(infinity)(-)= lim(u --> infinity)f(u)/u, f(0)(-)= lim(u -->0)f(u)/u, f(infinity)(+) = lim(u --> infinity)f(u)/u, g may be singular at t = 0 and/or t = 1. The proof uses a fixed point theorem in cone theory.展开更多
General solution for homogeneous Riemann problems of higher degree is considered. By introducing the concept of loop as well as cross-point, the problem is solved in detail for the quadratic case. The cubic and the qu...General solution for homogeneous Riemann problems of higher degree is considered. By introducing the concept of loop as well as cross-point, the problem is solved in detail for the quadratic case. The cubic and the quartic ones are also analysed.展开更多
The existence of at least two positive solutions is presented for the singular second-order boundary value problem{1/p(t)( p(t)x′(t))′+Φ(t)f(t,x(t),p(t)x′(t))=0,0〈t〈1, limt→0 p(t)x′(t)=...The existence of at least two positive solutions is presented for the singular second-order boundary value problem{1/p(t)( p(t)x′(t))′+Φ(t)f(t,x(t),p(t)x′(t))=0,0〈t〈1, limt→0 p(t)x′(t)=0,x(1)=0by using the fixed point index, where f may be singular at x = 0 and px ′= 0.展开更多
The present article deals with some boundary value problems for nonlinear elliptic equations with degenerate rank 0 including the oblique derivative problem. Firstly the formulation and estimates of solutions of the o...The present article deals with some boundary value problems for nonlinear elliptic equations with degenerate rank 0 including the oblique derivative problem. Firstly the formulation and estimates of solutions of the oblique derivative problem are given, and then by the above estimates and the method of parameter extension, the existence of solutions of the above problem is proved. In this article, the complex analytic method is used, namely the corresponding problem for degenerate elliptic complex equations of first order is firstly discussed, afterwards the above problem for the degenerate elliptic equations of second order is solved.展开更多
In this article, the authors discuss the Riemann boundary value problems with given principal part. First, authors consider a special case and give a classification of the solution class Rn by the way. And then, they ...In this article, the authors discuss the Riemann boundary value problems with given principal part. First, authors consider a special case and give a classification of the solution class Rn by the way. And then, they consider the general case. The solvable conditions for this problem and its solutions is obtained when it is solvable.展开更多
We mainly study the existence of positive solutions for the following third order singular multi-point boundary value problem{x^(3)(t) + f(t, x(t), x′(t)) = 0, 0 〈 t 〈 1,x(0)-∑i=1^m1 αi x(ξi) = 0...We mainly study the existence of positive solutions for the following third order singular multi-point boundary value problem{x^(3)(t) + f(t, x(t), x′(t)) = 0, 0 〈 t 〈 1,x(0)-∑i=1^m1 αi x(ξi) = 0, x′(0)-∑i=1^m2 βi x′(ηi) = 0, x′(1)=0,where 0 ≤ ai≤∑i=1^m1 αi 〈 1, i = 1, 2, ···, m1, 0 〈 ξ1〈 ξ2〈 ··· 〈 ξm1〈 1, 0 ≤βj≤∑i^m2=1βi〈1,J=1,2, ···, m2, 0 〈 η1〈 η2〈 ··· 〈 ηm2〈 1. And we obtain some necessa βi 〈=11, j = 1,ry and sufficient conditions for the existence of C^1[0, 1] and C^2[0, 1] positive solutions by constructing lower and upper solutions and by using the comparison theorem. Our nonlinearity f(t, x, y)may be singular at x, y, t = 0 and/or t = 1.展开更多
By fixed point theorem of a mixed monotone operators, we study Lidstone boundary value problems to nonlinear singular 2mth-order differential and difference equations, and provide sufficient conditions for the existen...By fixed point theorem of a mixed monotone operators, we study Lidstone boundary value problems to nonlinear singular 2mth-order differential and difference equations, and provide sufficient conditions for the existence and uniqueness of positive solution to Lidstone boundary value problem for 2mth-order ordinary differential equations and 2mth-order difference equations. The nonlinear term in the differential and difference equation may be singular.展开更多
In this paper, the author obtains an existence theorem of minimal and maximal solutions for the periodic boundary value problems of nonlinear impulsive integrodifferential equations of mixed type in Banach space by me...In this paper, the author obtains an existence theorem of minimal and maximal solutions for the periodic boundary value problems of nonlinear impulsive integrodifferential equations of mixed type in Banach space by means of the monotone iterative technique and cone theory based on a comparison result.展开更多
The existence of solutions for second order three-point boundary value problems with nonlinear growth at resonance is studied by using Mawhin continuation theorem. The result shows that theorem 1 and 2 at least have o...The existence of solutions for second order three-point boundary value problems with nonlinear growth at resonance is studied by using Mawhin continuation theorem. The result shows that theorem 1 and 2 at least have one solution in c1[0,1]展开更多
In the present paper, an equation of nonlinear chromatography is derived from the physical chemistry A recursion formula of the symmetries of the equation as well as an infinite number of symmetries is found. A series...In the present paper, an equation of nonlinear chromatography is derived from the physical chemistry A recursion formula of the symmetries of the equation as well as an infinite number of symmetries is found. A series of Backlund transformations of the equation are constructed by means of the symmetries. The exact solutions of two boundary-initial value problems on the half straight line for the equation are given m terms of the solutions of the corresponding linear problems.展开更多
Sufficient conditions for the existence of at least two positive solutions of a nonlinear m -points boundary value problems are established. The results are obtained by using a new fixed point theorem in cones. An exa...Sufficient conditions for the existence of at least two positive solutions of a nonlinear m -points boundary value problems are established. The results are obtained by using a new fixed point theorem in cones. An example is provided to illustrate the theory.展开更多
文摘This paper considers the regularity of solutions to mixed boundary value problems in small-angle regions for elliptic equations. By constructing a specific barrier function, we proved that under the assumption of sufficient regularity of boundary conditions and coefficients, as long as the angle is sufficiently small, the regularity of the solution to the mixed boundary value problem of the second-order elliptic equation can reach any order.
基金supported by the National Natural Science Foundation of China (No.12172154)the 111 Project (No.B14044)+1 种基金the Natural Science Foundation of Gansu Province (No.23JRRA1035)the Natural Science Foundation of Anhui University of Finance and Economics (No.ACKYC20043).
文摘In this study,a wavelet multi-resolution interpolation Galerkin method(WMIGM)is proposed to solve linear singularly perturbed boundary value problems.Unlike conventional wavelet schemes,the proposed algorithm can be readily extended to special node generation techniques,such as the Shishkin node.Such a wavelet method allows a high degree of local refinement of the nodal distribution to efficiently capture localized steep gradients.All the shape functions possess the Kronecker delta property,making the imposition of boundary conditions as easy as that in the finite element method.Four numerical examples are studied to demonstrate the validity and accuracy of the proposedwavelet method.The results showthat the use ofmodified Shishkin nodes can significantly reduce numerical oscillation near the boundary layer.Compared with many other methods,the proposed method possesses satisfactory accuracy and efficiency.The theoretical and numerical results demonstrate that the order of theε-uniform convergence of this wavelet method can reach 5.
文摘Accurately approximating higher order derivatives is an inherently difficult problem. It is shown that a random variable shape parameter strategy can improve the accuracy of approximating higher order derivatives with Radial Basis Function methods. The method is used to solve fourth order boundary value problems. The use and location of ghost points are examined in order to enforce the extra boundary conditions that are necessary to make a fourth-order problem well posed. The use of ghost points versus solving an overdetermined linear system via least squares is studied. For a general fourth-order boundary value problem, the recommended approach is to either use one of two novel sets of ghost centers introduced here or else to use a least squares approach. When using either ghost centers or least squares, the random variable shape parameter strategy results in significantly better accuracy than when a constant shape parameter is used.
基金Project supported by the National Natural Science Foundation of China (No. 12002195)the National Science Fund for Distinguished Young Scholars (No. 12025204)the Program of Shanghai Municipal Education Commission (No. 2019-01-07-00-09-E00018)。
文摘The boundary value problem plays a crucial role in the analytical investigation of continuum dynamics. In this paper, an analytical method based on the Dirac operator to solve the nonlinear and non-homogeneous boundary value problem of rectangular plates is proposed. The key concept behind this method is to transform the nonlinear or non-homogeneous part on the boundary into a lateral force within the governing function by the Dirac operator, which linearizes and homogenizes the original boundary, allowing one to employ the modal superposition method for obtaining solutions to reconstructive governing equations. Once projected into the modal space, the harmonic balance method(HBM) is utilized to solve coupled ordinary differential equations(ODEs)of truncated systems with nonlinearity. To validate the convergence and accuracy of the proposed Dirac method, the results of typical examples, involving nonlinearly restricted boundaries, moment excitation, and displacement excitation, are compared with those of the differential quadrature element method(DQEM). The results demonstrate that when dealing with nonlinear boundaries, the Dirac method exhibits more excellent accuracy and convergence compared with the DQEM. However, when facing displacement excitation, there exist some discrepancies between the proposed approach and simulations;nevertheless, the proposed method still accurately predicts resonant frequencies while being uniquely capable of handling nonuniform displacement excitations. Overall, this methodology offers a convenient way for addressing nonlinear and non-homogenous plate boundaries.
基金supported by Grant In Aid research fund of Virginia Military Instittue, USA
文摘We study boundary value problems for fractional integro-differential equations involving Caputo derivative of order α∈ (n-1, n) in Banach spaces. Existence and uniqueness results of solutions are established by virtue of the Holder's inequality, a suitable singular Cronwall's inequality and fixed point theorem via a priori estimate method. At last, examples are given to illustrate the results.
基金Supported by the NNSF of China(10871150, 11001273)Supported by the Freedom Explore Program of Central South University(721500049)
文摘In this paper, the so-called Riemann-Hilbert compound boundary value problems for hyperanalytic functions are considered, include the compound value problems for simply connected regions and open arcs, we get these solutions.
文摘The existence of multiple positive solutions for a class of higher order p Laplacian boundary value problem is studied. By means of the Leggett Williams fixed point theorem in cones, existence criteria which ensure the existence of at least three positive solutions of the boundary value problem are established.
文摘The singularly perturbed elliptic equation boundary value problem with turning point is considered. Using the method of multiple scales and the comparison theorem, the asymptotic behavior of solution for the boundary value problem is studied.
基金Sponsored by the NSF of Anhui Provence(2005kj031ZD,050460103)Supported by the Teaching and Research Award Program for Excellent Teachers in Higher Education Institutions of Anhui Provence and the Key NSF of Education Ministry of China(207047)
文摘By using fixed-point index theory,we study boundary value problems for systems of nonlinear second-order differential equation,and a result on existence and multiplicity of positive solutions is obtained.
文摘New existence results are presented for the singular second-order nonlinear boundary value problems u ' + g(t)f(u) = 0, 0 < t < 1, au(0) - betau ' (0) = 0, gammau(1) + deltau ' (1) = 0 under the conditions 0 less than or equal to f(0)(+) < M-1, m(1) < f(infinity)(-)less than or equal to infinity or 0 less than or equal to f(infinity)(+)< M-1, m(1) < f (-)(0)less than or equal to infinity where f(0)(+) = lim(u -->0)f(u)/u, f(infinity)(-)= lim(u --> infinity)f(u)/u, f(0)(-)= lim(u -->0)f(u)/u, f(infinity)(+) = lim(u --> infinity)f(u)/u, g may be singular at t = 0 and/or t = 1. The proof uses a fixed point theorem in cone theory.
文摘General solution for homogeneous Riemann problems of higher degree is considered. By introducing the concept of loop as well as cross-point, the problem is solved in detail for the quadratic case. The cubic and the quartic ones are also analysed.
基金the NNSFC(10571111)the Fundation of Natural Science of Shandong Province(Y2005A07)
文摘The existence of at least two positive solutions is presented for the singular second-order boundary value problem{1/p(t)( p(t)x′(t))′+Φ(t)f(t,x(t),p(t)x′(t))=0,0〈t〈1, limt→0 p(t)x′(t)=0,x(1)=0by using the fixed point index, where f may be singular at x = 0 and px ′= 0.
文摘The present article deals with some boundary value problems for nonlinear elliptic equations with degenerate rank 0 including the oblique derivative problem. Firstly the formulation and estimates of solutions of the oblique derivative problem are given, and then by the above estimates and the method of parameter extension, the existence of solutions of the above problem is proved. In this article, the complex analytic method is used, namely the corresponding problem for degenerate elliptic complex equations of first order is firstly discussed, afterwards the above problem for the degenerate elliptic equations of second order is solved.
基金Sponsored by the National NSFC under grant No10471107the Research Foundation for Outstanding Young Teachers, China University of Geosciences(Wuhan)
文摘In this article, the authors discuss the Riemann boundary value problems with given principal part. First, authors consider a special case and give a classification of the solution class Rn by the way. And then, they consider the general case. The solvable conditions for this problem and its solutions is obtained when it is solvable.
基金supported by the National Science Foundation of Shandong Province(ZR2009AM004)
文摘We mainly study the existence of positive solutions for the following third order singular multi-point boundary value problem{x^(3)(t) + f(t, x(t), x′(t)) = 0, 0 〈 t 〈 1,x(0)-∑i=1^m1 αi x(ξi) = 0, x′(0)-∑i=1^m2 βi x′(ηi) = 0, x′(1)=0,where 0 ≤ ai≤∑i=1^m1 αi 〈 1, i = 1, 2, ···, m1, 0 〈 ξ1〈 ξ2〈 ··· 〈 ξm1〈 1, 0 ≤βj≤∑i^m2=1βi〈1,J=1,2, ···, m2, 0 〈 η1〈 η2〈 ··· 〈 ηm2〈 1. And we obtain some necessa βi 〈=11, j = 1,ry and sufficient conditions for the existence of C^1[0, 1] and C^2[0, 1] positive solutions by constructing lower and upper solutions and by using the comparison theorem. Our nonlinearity f(t, x, y)may be singular at x, y, t = 0 and/or t = 1.
基金supported by Scientific Research Fund of Heilongjiang Provincial Education Department (11544032)the National Natural Science Foundation of China (10571021, 10701020)
文摘By fixed point theorem of a mixed monotone operators, we study Lidstone boundary value problems to nonlinear singular 2mth-order differential and difference equations, and provide sufficient conditions for the existence and uniqueness of positive solution to Lidstone boundary value problem for 2mth-order ordinary differential equations and 2mth-order difference equations. The nonlinear term in the differential and difference equation may be singular.
文摘In this paper, the author obtains an existence theorem of minimal and maximal solutions for the periodic boundary value problems of nonlinear impulsive integrodifferential equations of mixed type in Banach space by means of the monotone iterative technique and cone theory based on a comparison result.
文摘The existence of solutions for second order three-point boundary value problems with nonlinear growth at resonance is studied by using Mawhin continuation theorem. The result shows that theorem 1 and 2 at least have one solution in c1[0,1]
文摘In the present paper, an equation of nonlinear chromatography is derived from the physical chemistry A recursion formula of the symmetries of the equation as well as an infinite number of symmetries is found. A series of Backlund transformations of the equation are constructed by means of the symmetries. The exact solutions of two boundary-initial value problems on the half straight line for the equation are given m terms of the solutions of the corresponding linear problems.
文摘Sufficient conditions for the existence of at least two positive solutions of a nonlinear m -points boundary value problems are established. The results are obtained by using a new fixed point theorem in cones. An example is provided to illustrate the theory.